首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=2的某邻域内可导,且f′(2)=0,又=一2,则f(2)( ).
设函数f(x)在x=2的某邻域内可导,且f′(2)=0,又=一2,则f(2)( ).
admin
2019-07-23
55
问题
设函数f(x)在x=2的某邻域内可导,且f′(2)=0,又
=一2,则f(2)( ).
选项
A、必是f(x)的极大值
B、必是f(x)的极小值
C、不一定是f(x)的极值
D、一定不是f(x)的极值
答案
D
解析
利用极限的保号性及极值的定义判别之.
仅(D)入选. 由f(x)可导和f′(2)=0知,x=2是f(x)的驻点,但由
根据极限保号性及(x一2)
2
>0知,当x≠2时,f′(x)<0,所以f(2)一定不是f(x)的极值.
转载请注明原文地址:https://kaotiyun.com/show/gyJ4777K
0
考研数学三
相关试题推荐
设f(x)连续,且f(0)=1,令F(t)=f(x2+y2)dxdy(t≥0),求F’’(0).
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10—0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明:
设f(x)在[a,b]上连续可导,证明:
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)E(0,1),使得f(x)=f(0)+xf’[θ(x)x];
求的间断点并判断其类型.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所同围成的闭区域D上的最小值和最大值.
设∫0yetdt+∫0xcostdt=xy确定函数y=y(x),则=______.
随机试题
患者,男,35岁。间断喘息发作5年,无明显季节性,发作以夜间为著。发作时口服β受体激动剂症状可明显缓解。近日喘息再次发作,行肺功能检查示,FEV占预计值的84%,FEV1/FVC82%。为明确诊断,应首先进行的检查是
在Word中,按______键可实现“插入”方式与“改写”方式的相互转换。
简述新时代党的建设的方针。
机体各种功能活动所消耗的能量中,最终不能转化为体热的是
关于酒剂与酊剂的叙述,正确的是()。
私人储蓄的两个来源是()。
也许监管部门已经习惯了让媒体跑在前面,自己在后__________,在舆论压力下被动执法,这样的监管从根本上是对违法企业的__________,企业自然有恃无恐。填入划横线部分最恰当的一项是:
下列关于企业合并与分立的说法不正确的是()
下列算法中,不属于进程调度算法的是
Somedoctorsaretakinganunusualnewapproachtocommunicatebetterwithpatients—theyareletting【C1】______readthenotestha
最新回复
(
0
)