首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g’(x),φ’(x)的图形分别为 则曲线y=f(x),y=g(x),y=φ(x)中恰有两个拐点的是
设f(x),g’(x),φ’(x)的图形分别为 则曲线y=f(x),y=g(x),y=φ(x)中恰有两个拐点的是
admin
2016-10-20
43
问题
设f(x),g’(x),φ’(x)的图形分别为
则曲线y=f(x),y=g(x),y=φ(x)中恰有两个拐点的是
选项
A、y=f(x).
B、y=f(x),y=g(x).
C、y=f(x),y=φ(x).
D、y=f(x),y=g(x),y=φ(x)
答案
D
解析
(1)由f(x)的图形可知,在(x
0
,x
1
)上为凸弧,(x
1
,x
2
)上为凹弧,(x
2
,+∞)为凸弧,故(x
1
,f(x
1
)),(x
2
,f(x
2
))是y=f(x)的两个拐点.又因f(x)在点x=x
0
处不连续,所以点(x
0
,f(x
0
))不是拐点.(拐点定义要求函数在该点处连续)
(2)由g’(x)的图形可知,在x=x
1
和x=x
2
处有g’’(x)=0,且在x=x
1
,x=x
2
的左右两侧二阶导数异号,故有两个拐点(x
1
,g(x
1
))与(x
2
,g(xv)).由于在x
0
处g’(x)不连续,且在x
0
附近,当x<x
0
和x>x
0
时均有g’’(x)>0,故点(x
0
,g(x
0
))不是拐点.因此g(x)只有两个拐点.
(3)由φ’’(x)的图形可知,在点x=x
0
与x=x
2
处φ(x)的二阶导数等于零,且二阶导数在其左右异号,故点(x
0
,φ(x
0
))与(x
2
,φ(x
2
))为拐点.因为点x
1
的附近二阶导数均为正,故点(x
1
,φ(x
1
))不是拐点.
综上所述,曲线y=f(x),y=g(x),y=φ(x)均有两个拐点.故选(D).
转载请注明原文地址:https://kaotiyun.com/show/h4T4777K
0
考研数学三
相关试题推荐
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
计算下列极限:
用向量法证明:三角形两边中点的连线平行于第三边,且长度等于第三边长度的一半.
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
随机试题
()是指在一定时期内,在各种可能的价格下,生产者愿意并且能够提供商品或劳务的数量。
在历史上中国共产党曾提出:①“鼓足干劲,力争上游,多快好省地建设社会主义”;②“一切反动派都是纸老虎”;③“中华人民共和国万岁”;④“打倒蒋介石,解放全中国”。按时间先后顺序排列正确的是()。
全陪在与领队核对和商定旅游日程安排应以组团社的()为依据。
生物群落是植物、动物、微生物有序协调统一的群体。()
下列哪种行为是不属于可产生意思表示效力的默示行为?()
反常积分收敛,则()。
招标人于2006年4月1日发布招标公告,2006年4月20日。发布资格项目预审公告,2006年5月10日发售招标文件,投标人于投标截止日2006年6月10日及时递交了投标文件,2006年7月20日招标人发出中标通知书,则要约生效的时间是()。【20
微分方程xy′+2y=xlnx满足的特解为__________,
SitcomsasaToolforELTEnglishteachershavebeenusingvideosintheclassroomfordecadesandnowsitcomsemergeinclassr
Thispartistotestyourabilitytodopracticalwriting.Youarerequiredtowriteabusinessletteraccordingtothefollowin
最新回复
(
0
)