首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)= (Ⅰ)求f′(χ); (Ⅱ)证明:χ=0是f(χ)的极大值点; (Ⅲ)令χn=1,考察f′(χn)是正的还是负的,n为非零整数; (Ⅳ)证明:对δ>0,f(χ)在(-δ,0]上不单调上升,在[0,δ]上不单调下
设f(χ)= (Ⅰ)求f′(χ); (Ⅱ)证明:χ=0是f(χ)的极大值点; (Ⅲ)令χn=1,考察f′(χn)是正的还是负的,n为非零整数; (Ⅳ)证明:对δ>0,f(χ)在(-δ,0]上不单调上升,在[0,δ]上不单调下
admin
2016-10-21
56
问题
设f(χ)=
(Ⅰ)求f′(χ);
(Ⅱ)证明:χ=0是f(χ)的极大值点;
(Ⅲ)令χ
n
=
1,考察f′(χ
n
)是正的还是负的,n为非零整数;
(Ⅳ)证明:对
δ>0,f(χ)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
选项
答案
(Ⅰ)当χ≠0时按求导法则得 [*] 当χ=0时按导数定义得 f′(0)=[*]=0 (Ⅱ)由于f(χ)-f(0)=-χ(2+sin[*])<0(χ≠0),即f(χ)<f(0),于是由极值的定义可知χ=0是f(χ)的极大值点. (Ⅲ)令χ
n
=[*](n=±1,±2,±3,…),则[*](-1)
n
,于是 f′(χ
n
)=[*] (Ⅳ)对[*]>0,当n为[*]负奇数且|n|充分大时χ
n
∈(-δ,0),f′(χ
n
)<0[*]f(χ)在(-δ,0)不单调上升;当n为正偶数且n充分大时χ
n
∈(0,δ),f′(χ
n
)>0得f(χ)在(0,δ)不单调下降.
解析
转载请注明原文地址:https://kaotiyun.com/show/hHt4777K
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)内连续,且F(x)=∫0x(x-2t)f(t)dt.试证:若f(x)为偶函数,则F(x)也是偶函数。
设f(x)在[a,+∞)上连续,且存在,证明:f(x)在[a,+∞)上有界。
讨论函数的连续性,若有间断点,判别其类型。
利用极限存在准则证明:问本题能否用极限的四则运算法则求解?
曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程为________。
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f"(ξ)=0.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c;存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设0<a1<π,an+1=sinan(n=1,2,…).证明:存在,并求此极限;
设f(x)连续,ψ(x)=∫01f(xt)dt,且,求ψ’(x)并讨论ψ’(x)在x=0处的连续性。
随机试题
Idon’tthinkit’snecessaryforustodiscussthisquestionanyfurther.()
计算机网络中为了防止黑客攻击服务器所采用的关键技术是_______技术。
胆囊无痛性肿大伴黄疸,见于()
为一位急性肺栓塞的患者进行身体评估,可获得的体征有
肘横纹(平肘尖)至腕掌(背)侧横纹的骨度分寸是
香港特别行政区的下列哪一项职务可由特区非永久性居民担任?(2008年试卷一第16题)
工业安装工程的特征是有()。
颜色为黄色的地面标志包括()。
关于转让旧房及建筑物土地增值税扣除项目的税务处理,下列说法正确的是()。
教育现代化的核心是()。
最新回复
(
0
)