首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
admin
2018-05-17
68
问题
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
选项
答案
由微分中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 [*] 因为点A,B,C共线,所以f′(ξ
1
)=f′(ξ
2
), 又因为f(χ)二阶可导,所以再由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f〞(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hMk4777K
0
考研数学二
相关试题推荐
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_________.
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫0λf(x)dx≥λ∫01f(x)dx.
设,已知Aa与a线性相关,则a=_________.
微分方程y’’+y=-2x的通解为_________.
(2006年试题,一)曲线的水平渐近线方程为_________.
(2009年试题,一)当x→0时,f(x)=x一sinax与g(x)=x2ln(1一bx)为等价无穷小,则()。
(2005年试题,17)如图1—3—1所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4),设函数f(x)具有三阶连续导数,计算定积分
有一平底容器,其内侧壁是由曲线x=ψ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
随机试题
A、Whetherthepracticeshouldbeallowedtocontinueinfuture.B、Whetherthereshouldbeaminimumagelimitforexecution.C、W
A.碘酊B.过氧乙酸C.戊二醛D.漂白粉E.乙醇胃镜的消毒可采用
治疗温热病邪入血分,发斑,神昏,壮热。宜选用
某公司某项目(以下简称工程),总投资为768万元,其中设备投资为370万元,土建及其他投资为398万元。公司于2001年9月27日办理了该工程的《村镇规划选址意见书》,2002年2月8日开始办理土地审批手续。2001年11月,公司将工程发包给自称是挂靠某建
2015年1月1日,某地方政府拟采购A物资。在实施招标采购过程中,甲公司向该地方政府提供的生产资质为去年非法取得。在采购执行过程中,由于其他原因,该地方政府对该采购事项予以废标。要求:根据上述资料,回答下列问题。该地方政府的预算应由()批准。
下列选项中,关于商业银行从事理财产品销售活动的说法,正确的是()。
某小学六(3)班是全校有名的乱班,上课纪律混乱,打架成风。班上有一名“在野学生领袖”,喜好《水浒》人物,爱打抱不平,常常“为朋友两肋插刀”。打架时,只要他一挥手,其他人就蜂拥而上。班上正气不能抬头,班干部显得软弱无力,一全班同学的学习成绩逐步下降。如何
foodsecurity
Areyoufacingasituationthatlooksimpossibletofix? In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
EuropeanimmigrantstoColonialAmericabroughtwiththemtheirculture,traditionsandphilosophyabouteducation.Manyof【S1】_
最新回复
(
0
)