首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,且E+A可逆,证明: (1)E-A和(E+A)-1相乘可交换; (2)若A为反对称矩阵,则(E-A)(E-A)-1是正交矩阵.
设A是n阶方阵,且E+A可逆,证明: (1)E-A和(E+A)-1相乘可交换; (2)若A为反对称矩阵,则(E-A)(E-A)-1是正交矩阵.
admin
2016-01-25
43
问题
设A是n阶方阵,且E+A可逆,证明:
(1)E-A和(E+A)
-1
相乘可交换;
(2)若A为反对称矩阵,则(E-A)(E-A)
-1
是正交矩阵.
选项
答案
(1)因 (E-A)(E+A)=E-A
2
=(E+A)(E-A), 两边分别左乘、右乘(E+A)
-1
得到 (E+A)
-1
(E-A)(E+A)(E+A)
-1
=(E+A)
-1
(E+A)(E-A)(E+A)
-1
, 故 (E+A)
-1
(E—A)=(E-A)(E+A)
-1
, 即E-A与(E+A)
-1
相乘可交换. (2)为证(E-A)(E+A)
-1
为正交矩阵,只需证 [(E—A)(E+A)
-1
]
T
=[(E—A)(E+A)
-1
]
-1
. 事实上,由(1)的结果得到 [(E-A)(E+A)
-1
]
T
=[(E+A)
-1
(E-A)]
T
=(E-A)
T
[(E+A)
-1
]
T
=(E—A
T
)[(E+A)
T
]
-1
=(E-A
T
)(E+A
T
)
-1
=(E+A)(E—A)
-1
(A为反对称矩阵,A
T
=-A), 而 [(E—A)(E+A)
-1
]
-1
=[(E+A)
-1
]
-1
(E—A)
-1
=(E+A)(E-A)
-1
, 故 [(E-A)(E+A)
-1
]
T
=[(E-A)(E+A)
-1
]
-1
, 所以(E—A)(E+A)
-1
为正交矩阵.
解析
(1)利用(E-A)(E+A)=(E+A)(E-A)及矩阵乘法运算证之;
(2)利用正交矩阵的定义(AA
T
=E,即A
-1
=A
T
)证之.
转载请注明原文地址:https://kaotiyun.com/show/hOU4777K
0
考研数学三
相关试题推荐
1949年3月,中国共产党在河北省平山县西柏坡村召开了中共七届二中全会。毛泽东在会上提出了“两个务必”的思想,即
鸦片战争以后,中国还只是少数人有朦胧的民族觉醒意识。中国人民的民族意识开始普遍觉醒是在
经过多年努力,我国鲜活农产品流通体系建设有了很大发展,但总体上依然薄弱。随着城镇化进程加快,一些大中城市近郊菜地和零售网点不断减少,“卖难买贵”等问题突出。要以加强产销衔接为重点,加快建设高效、畅通、安全、有序的鲜活农产品流通体系。这样可以(
黑洞是爱因斯坦广义相对论预言存在的一种天体,光也无法逃脱它的势力范围,这个势力范围称作事件视界。日前,由全球200多名科学家共同合作的事件视界望远镜通过全球8个高海拔地区的射电望远镜勾勒出了黑洞图像,人类关于黑洞的数百年探索,终于得到了影像印证。这说明了(
材料1 (1)没收一切土地归苏维埃政府所有,分配农民个别耕种。(2)一切土地,经苏维埃政府没收并分配后,禁止买卖。(3)分配土地后,除老幼疾病没有耕种能力及服务与公众勤务这以外,其余的人必须强制劳动。(4)以人口为标准分配土地。男女老幼平均分配。(5)
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
将下列函数展成麦克劳林级数:
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
随机试题
中、小功率的电动机短路保护时,应使用熔断器或热继电器。()
胎儿生长受限分为内因性均称型和外因性不匀称型两类。()
疳证的主要临床表现包括
下列金融机构中,可以担任股票承销人的有()。
工程建设监理实施细则不包括()。
甲公司自行建造某项生产用大型设备,该设备由A、B、C、D四个部件组成。建造过程中发生外购设备和材料成本7320万元,人工成本1200万元,资本化的借款费用1920万元,安装费用1140万元,为达到正常运转发生测试费600万元,外聘专业人员服务费360万元,
根据《中华人民共和国教育法》,下列不属于设立学校及其他教育机构必须具备的基本条件是()。
16世纪意大利的音乐创作中,被称为“教会音乐的救星”的罗马乐派代表是()。
有如下程序:#includeusingnameespacestd;classBase{private:voidfun1()const{eout
JourneyinCatastrophes:ThreeFormsofViolentStormsI.WindsandstormsA.Winds’movinginviolentstorms—bringingabout
最新回复
(
0
)