首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
admin
2016-09-19
36
问题
已知P
-1
AP=
,α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
选项
A、[α
1
,-α
2
,α
3
]
B、[α
1
,α
2
+α
3
,α
2
-2α
3
]
C、[α
1
,α
3
,α
2
]
D、[α
1
+α
2
,α
1
-α
2
,α
3
]
答案
D
解析
若P
-1
AP=A=
,P=[α
1
,α
2
,α
3
],则有AP=PA,即
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
,
即 [Aα
1
,Aα
2
,Aα
3
]=[a
1
α
1
,a
2
α
2
,a
3
α
3
].
可见α
i
是矩阵A属于特征值a
i
的特征向量(i=1,2,3),又因矩阵P可逆,因此,α
1
,α
2
,α
3
线性无关.
若α是属于特征值λ的特征向量,则-α仍是属于特征值λ的特征向量,故(A)正确.
若α,β是属于特征值λ的特征向量,则k
1
α+k
2
β仍是属于特征值λ的特征向量.本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
-2α
3
仍是λ=6的特征向量,并且α
2
+α
3
,α
2
-2α
3
线性无关,故(B)正确.
关于(C),因为α
2
,α
3
均是λ=6的特征向量,所以α
2
,α
3
谁在前谁在后均正确,即(C)正确.
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
-α
2
不再是矩阵A的特征向量,故(D)错误.
转载请注明原文地址:https://kaotiyun.com/show/hkT4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
(1)怎样建立向量a与有序数组ax、ay、az之间的一一对应关系?数ax、ay、az的几何意义是什么?(2)分别叙述两个向量a、b平行和垂直的充要条件,并给出充要条件的坐标表示式.(3)叙述三个向量a、b、c共面的充要条件,并给出充要条件的坐标表示式.
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设圆盘x2+y2≤2ax内各点处的面密度与该点到坐标原点的距离成正比,试求该圆盘的重心.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
将原料加入萃取塔的操作步骤是()。
在一定统计周期内访问网站的用户数量称为【】
A.5°B.15°~30°C.30°~40°D.50°~60°E.90°皮内注射法的进针角度为
《工程建设项目施工招标投标方法》和《工程建设项目货物招标投标办法》均规定,投标保证金一般不得超过投标总价的()。
房地产赠与属于双务行为。()
特种设备在投入使用前或者投入使用后(),生产经营单位应当向直辖市或者设区的市的特种设备安全监督管理部门登记。
信托公司设立集合资金信托计划,单个信托计划的自然人人数不得超过()人,但单笔委托金额在300万元以上的自然人投资者和合格的机构投资者数量不受限制。
团队的特点不包括()。
分析歌曲《远方的客人请你留下来》。要求:分析该歌曲的调式调性及音乐风格。
企业与企业之间通过互联网进行产品、服务及信息交换的电子商务模式是
最新回复
(
0
)