首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2(b11,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2(b11,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-10-21
52
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
(b
11
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n—r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JdH4777K
0
考研数学三
相关试题推荐
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
由方程sinxy+ln(y—x)=x确定函数y=y(x),求.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P—1AP=B
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为__________.
判断级数的敛散性.
判断级数的敛散性.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
随机试题
“明四家”中以工笔重彩闻名的画家是()。[河北2018]
铣床安全操作规程包括哪些内容?
旅游乘数主要受到下列因素的影响()。
男性,30岁,临床表现为反复发作性肉眼血尿,在劳累及感染后加重。发作时伴有肌肉发痛,无高血压及肾功能减退,可考虑诊断
案例D供气公司位于N省B市C县工业园区内,有员工85人,法定代表人为甲。甲认为,公司员工不足100人,没有必要设置安全生产管理部门,也没有必要配备专职安全生产管理人员。公司技术人员乙于2010年通过了全国注册安全工程师执业资格考试,但未注册。乙被
使用GB/T2828.1进行产品验收,当N=1000,检验水平为Ⅰ,AQL=250(%)时,一次放宽抽样方案为()。
Thereishonourtoo,forallthecompetitors,winorlose.That’sthespiritoftheOlympic—totakepartinis______matters.
数据的存储结构是指()。
在使用putchar和getchar函数处理字符时,必须在程序的开头出现包含头文件的命令行是【】。
无符号二进制整数1001111转换成十进制数是_______。
最新回复
(
0
)