首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2017-07-26
61
问题
设f(x)=x
T
Ax为一n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=tx
1
+x
2
,其中t为待定实数,选择t,使f(x
0
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(tx
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为 at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
一4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=一t
0
x
1
,于是f(x
2
)=x
2
T
Ax
2
=(一t
0
x
1
)
T
A(一t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hrH4777K
0
考研数学三
相关试题推荐
设随机变量X和1,相互独立且都服从正态分布N(0,1),而X1,X2,…,X9和Y1,Y2,…,Y9分别是来自总体X和Y的简单随机样本,求统计量所服从的分布,并指明参数.
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
[*]
设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,Xn和Y1,Y2…,Yn分别是来自X和Y的简单随机样本,则=_________.
利用斯托克斯公式计算下列曲线积分,所有曲线从z轴的正向看去均取逆时针方向:
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
随机试题
不需要外加输入信号就能产生周期矩形波的电路为______。
撰写“医家五戒十要”的医家是()
A.癌前病变B.交界性肿瘤C.癌肉瘤D.原位癌E.非肿瘤性病变肉芽肿是
某政府投资基础工程,按照规定的程序,通过招标投标方式,选择了一家具有该工程要求的相应资质的项目管理单位,作为政府的代建单位,负责项目的投资管理和建设实施的组织工作。政府项目管理部门负责联系和协调。在该工程的前期工作阶段,项目管理单位要求政府项目管理部门在
关于煤层注水的减尘作用,下列说法错误的是()。
案例一般资料:求助者,女性,28岁,中学教师。案例介绍:求助者由于与丈夫发生矛盾,烦躁、失眠三个多月。下面是心理咨询师与求助者之间的一段咨询对话。心理咨询师:您好!请问我能为您提供什么帮助呢?求助者:我最近
所有的生物体都有生命;乳酸菌是一种生物,适合在无氧环境下生存:如果生物体有生命活动,那么生物体必须有呼吸运动。根据以上论述,可以推断()。
[*]
将E-R图转换为关系模式时,实体和联系都可以表示为()。
Nobodyyetknowshowlongandhowseriouslytheshakinessinthefinancialsystemwill______downtheeconomy.
最新回复
(
0
)