首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
专升本
已知f(x)是定义在R上的单调递减的可导函数,且f(1)=2,函数F(x)=∫0xf(t)dt一x2—1. 证明:方程F(x)=0在区间(0,1)内有且仅有一个实根.
已知f(x)是定义在R上的单调递减的可导函数,且f(1)=2,函数F(x)=∫0xf(t)dt一x2—1. 证明:方程F(x)=0在区间(0,1)内有且仅有一个实根.
admin
2019-03-07
49
问题
已知f(x)是定义在R上的单调递减的可导函数,且f(1)=2,函数F(x)=∫
0
x
f(t)dt一x
2
—1.
证明:方程F(x)=0在区间(0,1)内有且仅有一个实根.
选项
答案
显然F(x)在[0,1]上连续,且F(0)=一1<0,F(1)=∫
0
1
f(t)dt一2>∫
0
1
2dt一2=0, ∴方程F(x)=0在区间(0,1)内至少有一个实根. 由F
’’
(x)<0知F
’
(x)在R上单调递减, ∴x<1时,有F
’
(x)>F
’
(1)=f(1)一2=0, 由此知F(x)在(0,1)内单调递增, 因此方程F(x)=0在(0,1)内至多只有一个实根, 故方程F(x)=0在区间(0,1)内有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/hwCC777K
本试题收录于:
高等数学二题库成考专升本分类
0
高等数学二
成考专升本
相关试题推荐
ProfessorSmithrecentlypersuaded35people,23ofthemwomen,tokeepadiaryofalltheirabsent-mindedactionsforafortnig
Itwasgoingtobesometime______hewouldseehisfatheragain.
Youhadbetter______teasingthesenewcomers,forthatwillhurttheirfeeling.
求函数极限:
求函数的连续区间和相应的极值:
求函数的连续区间和相应的极值:
设函数y=esinx,求dy.
曲线y=2x2+3x-26上点M处的切线斜率是15,则点M的坐标是_________。
设函y=y(x)是由方程ln(x+y)=x2所确定的隐函数,求函数曲y=y(x)过点(0,1)的切线方程。
求微分方程xy’+y=xsinx2满足的特解.
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)