首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
admin
2018-11-23
43
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
(1)求A的特征值.
(2)当实数k满足什么条件时A+kE正定?
选项
答案
(1)因为A是实对称矩阵,所以A的特征值都是实数. 假设λ是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或-2.又因为r(A-0E)=r(A)=2,特征值0的重数为3-r(A-0E)=1,所以-2是A的二重特征值.A的特征值为0,-2,-2. (2)A+kE的特征值为k,k-2,k-2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2M4777K
0
考研数学一
相关试题推荐
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,fy’(x,0)=x,则f(x,y)=__________.
已知|a|=4,|b|=2,|a—b|=求向量a与b的夹角.
已知曲线L的方程为,(t≥0)1)讨论L的凹凸性;2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线方程;3)求此切线L(对应于x≤x0的部分)及x轴所围成的平面图形面积.
设ex-ysin(x+z)=0,试求
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设n元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
(02年)设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
(06年)微分方程的通解是______.
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(忌为常数).证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根.
设F(x)=∫0x(x2-t2)f’(t)dt,其中f’(x)在x=0处连续,且当x→0时,F’(x)~x2,则f’(0)=_______.
随机试题
[*]
正常人尿常规检查,不可能出现下列哪项结果
某企业只生产一种产品,按0.6的平滑系数预测4月份的销售量为18500件。该企业1~4月份的实际销售量与总成本资料如下:要求:(1)采用高低点法进行成本性态分析。(2)采用平滑指数法预测5月份的产销量。(3)根据成
甲公司采用出包方式交付承建商建设一条生产线。生产线建设工程于20×8年1月1日开工,至20×8年12月31日尚未完工。专门为该生产线建设筹集资金的情况如下:(1)20×8年1月1日,按每张98元的价格折价发行分期付息、到期还本的公司债券30万张
某镇为节省耕地、繁荣经济、加快小城镇建没,经镇政府研究决定,在紧靠老镇繁华地带的河边,改河道围沙滩100亩,进行商贸区扑发建设。由于土地造价低,又紧靠繁华地带,投资者热情很高,很快就引进了私营业者60多户到此区安家落户从事商贸经营活动。此商贸开发区启动营运
制发公文的目的和要求,一般是由()确定的。
使用VC6打开考生文件夹下的源程序文件modi2.cpp。完成函数fun(char*str,char*s)空出部分。函数fun(char*str,char*s)的功能是:将在字符串str中下标为偶数位置上的字符,紧随其后重复出现一次,放在一个新串s中,s
AHowtoUseaPaintingKnife使用画刀的方法Paintingwithaknifeisabitlikeputtingbutteronbreadandproducesquitea(1)resu
Inmanycountries,whenpeoplegivetheirname,theyrefertothemselvesusingtheirlastnameorfamilyname.IntheUnitedSt
Wedon’tknowwhentheroadwillbe(wide)______.
最新回复
(
0
)