首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
admin
2018-11-23
49
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
(1)求A的特征值.
(2)当实数k满足什么条件时A+kE正定?
选项
答案
(1)因为A是实对称矩阵,所以A的特征值都是实数. 假设λ是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或-2.又因为r(A-0E)=r(A)=2,特征值0的重数为3-r(A-0E)=1,所以-2是A的二重特征值.A的特征值为0,-2,-2. (2)A+kE的特征值为k,k-2,k-2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2M4777K
0
考研数学一
相关试题推荐
设函数y=f(x)由方程y-x=ex(1-y)确定,则=__________。
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
计算其中∑为区域Ω的外侧,Ω由不等式和x2+y2+z2≤4所确定,f(u)有连续一阶导数.
计算三重积分绕z轴旋转一周的曲面与平面z=2,z=8所围成的空间区域.
设函数f(t)在[0,+∞)上连续,且满足方程求f(t).
(88年)设S为曲面x2+y2+z2=1的外侧,计算曲面积分
(05年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是由线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
与直线,及直线都平行且经过坐标原点的平面方程是______.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
随机试题
依据我国《国徽法》的规定,可以悬挂国徽的国家机关是【】
新生儿生理性黄疸的原因与以下哪项无关
“比较并推荐先进、可靠、适用的项目建设方案”是()的主要任务之一。
2008年1月1日,乙建筑公司与客户签订一项固定造价建造合同,承建一幢办公楼,预计2009年6月30日完工;合同总金额为16000万元,预计合同总成本为14000万元。2009年4月28日,工程提前完工并符合合同要求,客户同意支付奖励款200万元。
下列选项中属于能力特质的有()。
(2017年)民间非营利组织应将预收的以后年度会费确认为负债。()
WSXEDCCFDRXVE
《中华人民共和国商业银行法》要求我国商业银行在一定期限内实现《巴塞尔协议》规定的“资本充足率不得低于8%”的目标。你认为我国四大国有商业银行应该采取何种策略措施才能实现这一目标?为什么?
A、条件(1)充分,但条件(2)不充分B、条件(2)充分,但条件(1)不充分C、条件(1)和(2)单独都不充分。但条件(1)和条件(2)联合起来充分D、条件(1)充分,条件(2)也充分E、条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
Intheyearsfollowingthe1977DietaryGoalsandthe1982NationalAcademyofSciencesreportondietandcancer,thefoodindu
最新回复
(
0
)