首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
admin
2017-12-21
56
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
.
(I)证明:向量组α
1
,α
2
,α
3
线性无关.
(Ⅱ)证明:A不可相似对角化.
选项
答案
(I)由Aα
1
=α
1
得(A-E)α
1
=0, 由Aα
2
=α
1
+α
2
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
得(A-E)α
3
=α
2
. 令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, 1) 两边左乘以(A-E)得 k
2
α
1
+k
3
α
2
=0, 2) 两边再左乘(A-E)得惫k
3
α
1
=0, 由α
1
≠0得k
3
=0,代入2)得k
2
α
1
=0,则k
2
=0, 再代入1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关. (Ⅱ)令P=(α
1
,α
2
,α
3
), 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
1
+α
2
,α
2
α
3
)得[*] 由|λE-A|=|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, [*]因为r(E-B)=2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2X4777K
0
考研数学三
相关试题推荐
设随机变量X1,X2,…X100独立同分布,且EXi=0,DXi=10,i=1,2,…,100,令
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为
幂级数的收敛域为________.
设f(x)在[a,b]上二阶可导,且f’(A)=f’(b)=0.证明:∈(a,b),使
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
函数y=lnx在区间[1,e]上的平均值为________.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
方程y″-3y′+2y=excos2x的特解形式y*=().
设由曲线与直线y=a(其中常数口满足0<a<1)以及x=0,x=1围成的平面图形(如右图的阴影部分)绕y轴旋转一周所得旋转体的体积为V(a,求V(a)的最小值与最小值点.
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
随机试题
Allworkersshouldcarryouttheirnormaldutiesduringthesafetyinspectiontomorrow________otherwiseinstructed.
IcrossedtheToddRiverand________myboilingbodyinacoolpool.
通常选用四格表资料Fisher确切概率计算法的条件是
患者女性,30岁。不明原因发热十多天,检查发现肝脾肿大,外周血WBC数量明显增多,且出现幼稚细胞,则应进一步做
水位观测时,沿岸验潮站采用自记验潮仪、便携式验潮仪、水尺,其观测误差不得大于()。
人体测量基准面中,通过铅垂轴和横轴的平面及与其平行的所有平面都称为()。
可以不参加工程竣工验收的单位是()。
下列关于上交所科创板保荐人持续督导制度的表述正确的是()。
以下关于集团项目组是否需要了解组成部分注册会计师的陈述中,不恰当的是()。
同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同,其原因是参与这两种蛋白质合成的()。
最新回复
(
0
)