首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
admin
2017-12-21
120
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
.
(I)证明:向量组α
1
,α
2
,α
3
线性无关.
(Ⅱ)证明:A不可相似对角化.
选项
答案
(I)由Aα
1
=α
1
得(A-E)α
1
=0, 由Aα
2
=α
1
+α
2
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
得(A-E)α
3
=α
2
. 令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, 1) 两边左乘以(A-E)得 k
2
α
1
+k
3
α
2
=0, 2) 两边再左乘(A-E)得惫k
3
α
1
=0, 由α
1
≠0得k
3
=0,代入2)得k
2
α
1
=0,则k
2
=0, 再代入1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关. (Ⅱ)令P=(α
1
,α
2
,α
3
), 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
1
+α
2
,α
2
α
3
)得[*] 由|λE-A|=|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, [*]因为r(E-B)=2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2X4777K
0
考研数学三
相关试题推荐
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1.,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T.计算:Anξ1;
ex展开成(x一3)的幂级数为________.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设随机变量X的概率密度为求Y=sinX的概率密度.
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
设证明:A=E+B可逆,并求A-1.
已知线性方程组是正定矩阵求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T为3维实向量。
设则该幂级数的收敛半径等于_________.
随机试题
患者,男,54岁。眩晕1个月,加重2周,昏眩欲仆,神疲乏力,面色白,时有心悸,夜寐欠安,舌淡,脉细。治疗应首选()
()是超过合理使用年限的建设工程鉴定的委托人。
[2012年第111题]下列有关老年人照料设施建筑阳台设计的叙述,错误的是:
下列各项中属于流动资产的有()。
我国证券投资分析师自律组织是()
下列不属于学前儿童语言教育活动的是()
非有效的证券或资产组合位于资本市场线的上方。[对外经济贸易大学2013研]
甲因购房向朋友乙借款,但是到期后甲未能按时偿还,乙将甲起诉至法院。法院判决甲在判决书生效后10日内偿还借款。甲收到判决书后,将自己的财产转移至父亲名下,致使法院的判决无法执行。甲的行为()
=_______.
Nobodyshould______.
最新回复
(
0
)