首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3. (I)证明:向量组α1,α2,α3线性无关. (Ⅱ)证明:A不可相似对角化.
admin
2017-12-21
65
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三维列向量且α
1
≠0,若Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
.
(I)证明:向量组α
1
,α
2
,α
3
线性无关.
(Ⅱ)证明:A不可相似对角化.
选项
答案
(I)由Aα
1
=α
1
得(A-E)α
1
=0, 由Aα
2
=α
1
+α
2
得(A-E)α
2
=α
1
, 由Aα
3
=α
2
+α
3
得(A-E)α
3
=α
2
. 令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, 1) 两边左乘以(A-E)得 k
2
α
1
+k
3
α
2
=0, 2) 两边再左乘(A-E)得惫k
3
α
1
=0, 由α
1
≠0得k
3
=0,代入2)得k
2
α
1
=0,则k
2
=0, 再代入1)得k
1
α
1
=0,从而k
1
=0,于是α
1
,α
2
,α
3
线性无关. (Ⅱ)令P=(α
1
,α
2
,α
3
), 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
1
+α
2
,α
2
α
3
)得[*] 由|λE-A|=|λE-B|=(λ-1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, [*]因为r(E-B)=2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2X4777K
0
考研数学三
相关试题推荐
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
求极限
盒子中有n个球,其编号分别为1,2,…,n,先从盒子中任取一个球,如果是1号球则放回盒子中去,否则就不放回盒子中;然后,再任取一个球,若第二次取到的是k(1≤k≤n)号球,求第一次取到1号球的概率.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设总体X的概率密度为试用样本X1,X2,…,Xn求参数α的矩估计和最大似然估计.
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记证明:二次型,(x)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果则当常数c=_________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布.
已知事件A与B相互独立,P(A)=a,P(B)=b.如果事件C发生必然导致事件A与B同时发生,则事件A,B,C均不发生的概率为_______.
设函数Fn(x)=∫0xf(t)dt一x∈[0,+∞),其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;
随机试题
目前在西方处于统治地位的领导理论是()。
能确诊系统性进行性硬化症的指标有
女,28岁。外感咳嗽10天,咳嗽气喘,大便习惯性便秘,舌质淡红,苔薄黄,脉滑略数。治疗宜选用的药物是
我国某省人大常委会制定了该省的《食品卫生条例》,关于该地方性法规,下列哪些选项是正确的?()
逻辑电路如图所示,当A=“1”时,时钟脉冲来到后JK触发器具有()。
国务院决定从2002年1月1日起实施所得税收入分享改革,规定到2003年以后中央与地方对所得税收入增量分享的比例分别是()。
在编制资金预算时,计算某期现金余缺不需考虑的因素是()。
远洋公司为一综合性的生产企业,属于增值税一般纳税人。2018年6月发生下列事项:(1)当月销售货物按分期收款合同应取得销售款60000元,月底对方仍未支付。(2)2018年1月销售货物不含税金额30000元,发货的同时开具了增值税专用发
幼儿园班级管理的原则不包括()。
广大农民在致富奔小康的过程中深切体会到:“要富口袋,先富脑袋”,这一说法在哲学上的含义是()。
最新回复
(
0
)