首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
N维列向量组α1,…,αn-1线性无关,且与非零向量β正交,证明:α1,…,αn-1,β线性无关.
N维列向量组α1,…,αn-1线性无关,且与非零向量β正交,证明:α1,…,αn-1,β线性无关.
admin
2017-08-31
22
问题
N维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交,证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=|β|
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/iGr4777K
0
考研数学一
相关试题推荐
(2001年试题,一)设y=e*(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________________.
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α2,则().
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有()
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
肝颈静脉回流征不出现于
下列属于直接补偿的是()。
水泥的体积安定性是指水泥浆在凝结硬化过程中()的性质。
银行申报核销呆账,必须提供的材料有()
在旅游活动中,交通事故是可以预见的事故,完全可以避免。()
商品在流通过程中要在仓库储存,而储存中主要危害之一是()。
已知由n—1个关键字组成的序列(K1,K2,…,Kn—1)是大顶堆,现在增加一个关键字Kn,要求将关键字序列(K1,K2,…,Kn—1,Kn),重新调整为大顶堆。请完成以下要求:给出算法的基本设计思想。
InCambodia,thechoiceofaspouseisacomplexonefortheyoungmale.Itmayinvolvenotonlyhisparentsandhisfriends,【C1
(2012年)计算二重积分及y轴为边界的无界区域.
Questions27-30Foreachquestion,onlyONEofthechoicesiscorrect.Writethecorrespondingletterintheappropriateboxon
最新回复
(
0
)