首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设四元齐次线性方程组(I)又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
admin
2018-09-20
35
问题
设四元齐次线性方程组(I)
又已知某齐次线性方程组(Ⅱ)的通解为k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(I)的解为[*]得所求基础解系ξ
1
=[0,0,1,0]
T
,ξ
2
=[一1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(I),得[*]k
1
=-k
2
.方程组(I)和(Ⅱ)有非零公共解,且为 x=一k
2
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[一1,1,1,1]
T
, 其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/iRW4777K
0
考研数学三
相关试题推荐
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zez所确定,求du.
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
设a>e,0<x<y<,求证ay-ax>(cosx-cosy)axlna.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为________.
下列说法正确的是().
随机试题
下列哪一选项是2012年《刑事诉讼法修正案》新增加的规定内容?()
热辐射是指物体以()形式传递热能的现象。
MostAmericansdon’tliketogetadvicefrommembersoftheirfamily.Whentheyneedadvice,theydon’tusually【C1】______people
A.溃疡B.玫瑰疹C.皮下结节D.蝶形红斑E.眶周紫红色斑疹系统性红斑狼疮口腔黏膜受损可表现为
药物代谢酶活性降低时不可能出现的是
食品专家高先生在一次由中国食品研究会于2000年5月7日召开的学术研讨会上,向与会代表介绍了一种新的绿色食品的制作方法,并要求与会代表予以保密。会后,某食品厂工程师张某在自己厂内开始试制高先生介绍的食品。1个月后,试制成功,某食品厂便开始订购设备,准备生产
[2007年第083题]民用建筑按功能分为两大类,下列哪项正确?
下列关于工程变更价款确定的描述,正确的有()。
以下属于认知过程的有()。
下列描述中正确的是()。
最新回复
(
0
)