首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时, λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)=o(h2)。
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时, λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)=o(h2)。
admin
2018-04-14
102
问题
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,
λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)=o(h
2
)。
选项
答案
方法一:只需证存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得 [*] 根据题设和洛必达法则,有 [*] 知λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组存在唯一解,即存在唯一的一组实数λ
1
,λ
2
, λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
(3h)-f(0)是比h
2
高阶的无穷小。 方法二:由麦克劳林公式得 f(h)=f(0)+f’(0)+[*]f"(ξ)h
2
(其中ξ介于0与h之间), 根据题设,使得当h→0时,有f(h)=f(0)+f’(0)h+[*]f"(0)h
2
+o(h
2
) 同理可得f(2h)=f(0)+2f’(0)h+2f"(0)h
2
+o(h
2
), f(3h)=f(0)+3f’(0)h+[*]f"(0)h
2
+o(h
2
), 故λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0) =(λ
1
+λ
2
+λ
3
-1)f(0)+(λ
1
+2λ
2
+3λ
3
)f’(0)h+[*](λ
1
+4λ
2
+9λ
3
)f"(0)h
2
+o(h
2
)。 因此λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组的解存在且唯一,即存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小。
解析
转载请注明原文地址:https://kaotiyun.com/show/iRk4777K
0
考研数学二
相关试题推荐
[*]
[*]
求函数的最大值和最小值。
[*]
[*]
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
y=2x的麦克劳林公式中xn项的系数是_________.
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
随机试题
某甲购买春天牌热水器一台,在使用过程中突然爆炸,致某甲重伤瘫痪。经查发现该热水器存在严重质量缺陷,在电压不稳时会导致爆炸的后果,当天由于夏季供电紧张,电压不稳超出国家标准。生产厂家在产品投入流通后经投诉检查,已发现该缺陷,但考虑到更换设计成本高涨,且发生电
A公司委托B海运公司运送一批货物,B公司在责任期间对下列哪些损失无须承担赔偿责任?
(2010年)已知三维列向量α、β满足αTβ=3,设三阶矩阵A=βαT,则()。
在加快成倍节拍流水中,任何两个相邻专业施工队间的流水步距应是所有流水节拍的?
劳动者在劳动时的能量消耗量与安静时的能量消耗量之差除以劳动时间称为()。
下列关于投资者教育的概念的说法,不正确的是()。
商品的交换原则是()。
阅读下面短文,回答下列问题。黑色闪电,既不是俄罗斯影片《黑色闪电》中的伏尔加老爷跑车,也不是在2008年北京奥运会上被冠以“黑色闪电”美誉的牙买加选手博尔特,它是真的闪电。长期以来,人们的心目中只有蓝白色闪电,这是空中的大气放电的自然现象,一般均伴有耀
第一次提出把教育学建成一门独立学科的是德国的哲学家、心理学家、教育家()。
China’semploymentandre-employmentsituationremainstoughwithasurgethisyearinthenumberofgraduateshittingthejobm
最新回复
(
0
)