首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时, λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)=o(h2)。
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时, λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)=o(h2)。
admin
2018-04-14
51
问题
设函数f(x)在x=0的某邻域具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0。证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,
λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)=o(h
2
)。
选项
答案
方法一:只需证存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得 [*] 根据题设和洛必达法则,有 [*] 知λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组存在唯一解,即存在唯一的一组实数λ
1
,λ
2
, λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
(3h)-f(0)是比h
2
高阶的无穷小。 方法二:由麦克劳林公式得 f(h)=f(0)+f’(0)+[*]f"(ξ)h
2
(其中ξ介于0与h之间), 根据题设,使得当h→0时,有f(h)=f(0)+f’(0)h+[*]f"(0)h
2
+o(h
2
) 同理可得f(2h)=f(0)+2f’(0)h+2f"(0)h
2
+o(h
2
), f(3h)=f(0)+3f’(0)h+[*]f"(0)h
2
+o(h
2
), 故λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0) =(λ
1
+λ
2
+λ
3
-1)f(0)+(λ
1
+2λ
2
+3λ
3
)f’(0)h+[*](λ
1
+4λ
2
+9λ
3
)f"(0)h
2
+o(h
2
)。 因此λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组的解存在且唯一,即存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小。
解析
转载请注明原文地址:https://kaotiyun.com/show/iRk4777K
0
考研数学二
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
[*]
[*]
[*]
求函数的最大值和最小值。
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在z=1处取得极值g(1)=1.求
利用求复合函数偏导的方法,得[*]
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
随机试题
外伤性颅内血肿的主要致命因素是
患儿,女,9岁。从婴儿时开始两掌跖发红粗糙变厚,随年龄增长逐渐加重,伴有细薄鳞屑,并渐扩展至指背及手背,夏季常发红明显伴臭味,冬季皮损常发生皲裂。两手掌及足跖弥漫性潮红粗糙增厚,伴有鳞屑,足部轻度浸渍发白,伴明显臭味,损害自掌跖侧面延伸至手足背,足部延伸到
下列属于特殊高处作业的有()。
企业对资产负债表中的资产都拥有所有权。( )
《律师事务所从事证券法律业务管理办法》规定,同一律师事务所不得同时为同一证券发行的发行人和保荐人、承销的证券公司出具法律意见,允许同时为同一收购行为的收购人和被收购的上市公司出具法律意见,不得在其他同一证券业务活动中为具有利害关系的不同当事人出具法律意见。
下列关于深圳证券交易所佣金标准的说法正确的有( )。
我国古代诗歌按产生的时代排列,正确的一项是()。
下列哪个选项是将一个十六进制值赋值给一个long型变量?()
Health&FitnessCentre1.LocationLocatedatthe【T1】______ofMarionStreetandGilesStreet.【T1】______2.BusinesshoursMon
如今,中国自行车年增长率不超过10%,但高端自行车(high-endbike)年增长率却高达40%。
最新回复
(
0
)