首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足 证明存在ξ∈(0,1)使得f’(ξ)=2ξf(ξ).
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足 证明存在ξ∈(0,1)使得f’(ξ)=2ξf(ξ).
admin
2022-10-08
44
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足
证明存在ξ∈(0,1)使得f’(ξ)=2ξf(ξ).
选项
答案
由积分中值定理,得到f(1)=[*]f(ξ
1
),ξ
1
∈[0,[*]],即f(1)e
-1
=[*]f(ξ
1
) 令F(x)=[*]f(x),则F(x)在[ξ
1
,1]上连续,在(ξ
1
,1)内可导,且 F(1)=f(1)e
-1
=[*]f(ξ
1
)=F(ξ
1
) 由罗尔定理可知,在(ξ
1
,1)内至少有一点ξ,使得 F’(ξ)=[*][f’(ξ)-2ξf(ξ)]=0 于是f’(ξ)=2ξf(ξ),ξ∈(ξ
1
,1)[*](0,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/iYR4777K
0
考研数学三
相关试题推荐
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
设有两条抛物线记它们交点的横坐标的绝对值为an,求这两条抛物线所围成的平面图形的面积Sn;
设y=f(x)有二阶连续导数,且满足xy"+3xy′2=1-e-x.若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.
由直线x=1与抛物线y2=2x所包围的图形绕直线旋转一周,求旋转体的表面积.
计算下列定积分:
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设f(x)为连续函数,a与m是常数且a>0,将二次积分I=∫0ady∫0yem(a-x)f(x)dx化为定积分,则I=______.
(2004年试题,三(3))设(I)证明f(x)是以π为周期的周期函数;(Ⅱ)求f(x)的值域.
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)