首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x). 求3阶矩阵B,使A=PBP-1;
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x). 求3阶矩阵B,使A=PBP-1;
admin
2019-12-26
58
问题
已知3阶矩阵A与3维列向量x,使x,Ax,A
2
x线性无关,且满足A
3
x=3Ax-2A
2
x,令P=(x,Ax,A
2
x).
求3阶矩阵B,使A=PBP
-1
;
选项
答案
设[*]则由AP=PB得 [*] 上式可写为 Ax=a
1
x+b
1
Ax+c
1
A
2
x, (1) A
2
x=a
2
x+b
2
Ax+c
2
A
2
x, (2) A
2
x=a
3
x+b
3
Ax+c
3
A
2
x. (3) 将A
2
x=3Ax-2A
2
x代入(3)式得 3Ax-2A
2
x=a
3
x+b
3
Ax+c
3
2
x. (4) 整理得 a
1
x+(b
1
-1)Ax+c
1
A
2
x=0, a
2
x+b
2
Ax+(c
2
-1)A
2
x=0, a
3
x+(b
3
-3)Ax+(c
3
+2)A
2
x=0. 由于x,Ax,A
2
x线性无关′故 a
1
:c
1
=0,b
1
=1; a
2
=b
2
=0,c
2
=1; a
3
=0,b
3
=3,c
3
=-2. 从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zGD4777K
0
考研数学三
相关试题推荐
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A—E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η2=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
3阶矩阵,已知r(AB)小于r(A)和r(B),求a,b和r(AB).
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设AB=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
随机试题
在下列病因中与子宫脱垂无关的是
某幼儿园有6岁儿童120人,根据WHO的2000年口腔健康目标,无龋儿童人数至少应达到
A.金黄色葡萄球菌B.大肠杆菌C.结核杆菌D.白色葡萄球菌E.溶血性链球菌【2003年考试真题】
肌疲劳试验常用于协助诊断
具有分析过程复杂性、多面性,实际运用难度较大等特点的财政支出效益分析方法是()。
我国宪法对公民在劳动方面的()等权利做了原则性规定。
画商:经纪人:佣金
WhichdepartmentisDr.Smithin?
LordChathamwhohadthesamefeelingnaturallysecondedtheproposal,buthewonderedwhytheyhadtomakeachoice.
A、It’slocatedinthecitycentre.B、Itoffersfreebedsforstudents.C、It’sinperiodsofhighdemand.D、Itstelephonenumber
最新回复
(
0
)