首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证 : (1)存在点η∈使得f(η)=η. (2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证 : (1)存在点η∈使得f(η)=η. (2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
admin
2018-04-15
45
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,
试证 :
(1)存在点η∈
使得f(η)=η.
(2)对
必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
选项
答案
(1)令F(z)=f(x)一x,则F(x)在[0,1]上连续,又F(1)=一1<0,[*]由介值定理可知,在[*]中至少存在一点η,使得F(η)=0,即f(η)=η. (2)令φ(x)=[f(x)一x]e
-λx
,则φ(x)在[0,η]上连续,在(0,η)内可导,且φ(0)=0,φ(η)=[f(η)-η]e
-λη
=0.由洛尔定理,存在点ξ∈(0,η)[*](0,1),使得φ’(ξ)=0,即e
-λξ
一λ(f(ξ)一ξ)一1]=0. 从而有f’(ξ)一λ[f(ξ)一ξ]=1.
解析
(1)这是讨论函数在某点取定值的问题,可转化为函数的零点问题.f(η)一η=0,即f(x)一x=0,即F(x)=f(x)一x在
内有零点.
由于待证的结论中不含导数,所以可由介值定理证明.
(2)欲证结论中含有一阶导数,应构造辅助函数用洛尔定理证明.
由f’(ξ)一λ[f(ξ)一ξ]=1,得到f’(x)一λf(x)=1一λx,
再由一阶非齐次线性方程的通解公式得
f(x)=e
∫λdx
[∫(1一λx)e
-∫λdx
dx+c
转载请注明原文地址:https://kaotiyun.com/show/iir4777K
0
考研数学一
相关试题推荐
证明拉格朗日中值定理。若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f(ξ)(b一a).
设,则=_________.
将函数展开成x一2的幂级数,并求出其收敛域。
求极限
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果则当常数c=________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布.
若对任意t>0,有f(tx,ty)=t"(x,y),则称函数f(x,y)是n次齐次函数.试证:若f(x,y)可微,则f(x,y)是n次齐次函数的充要条件是
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设f(x)=arcsinx,ξ为f(x)在[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限
细菌的增长率与总数成正比如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
随机试题
关系中每一个属性都有一个取值范围,称为属性的________。
一住店客人未付房钱即要离开旅馆去车站,旅馆服务员见状揪住他不让走,并打报警电话。客人说:“你不让我走还限制我自由,我要告你们旅馆,耽误了乘火车要你们赔偿。”旅馆这样做的性质应如何认定?
()属于后生动物。
在对标书详细评审中,技术评审的主要内容包括投标书的技术方案、技术措施、组织机构、进度及()等进行分析评价。
某企业以8%的年利率借得100000元,投资于某个寿命为5年的项目上,为使该项目有利可图,每年至少应收回的现金数额为()元。
剧烈运动时血浆的pH值()。
读某“科学园区开发成功的区位因素表”和“技术城结构示意图”,分析回答下列问题。该科学园为新兴工业区。据表说明该类工业区的交通运输特点。
全国法院坚持问题导向,梳理原因,对症施策,精准执行,形成了一个“党委领导、人大监督、政府支持、政法委协调、法院主办、部门配合、社会各界参与”的执行工作大格局,______________了一套完善的执行工作体制机制,______________了一批完备的
已知α1=(1,0,0)T,α2=(1,2,-1)T,α3=(-1,1,0)T,且Aα1=(2,1)T,Aα2=(-1,1)T,Aα3=(3,-4)T,则A=_______.
A、Itwasmadebyawell-knownartist.B、Itishand-painted.C、Itisfromanothercountry.D、Itisrare.B细节题。女士想要买那个瓷盘(potteryp
最新回复
(
0
)