首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证 : (1)存在点η∈使得f(η)=η. (2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证 : (1)存在点η∈使得f(η)=η. (2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
admin
2018-04-15
35
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,
试证 :
(1)存在点η∈
使得f(η)=η.
(2)对
必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
选项
答案
(1)令F(z)=f(x)一x,则F(x)在[0,1]上连续,又F(1)=一1<0,[*]由介值定理可知,在[*]中至少存在一点η,使得F(η)=0,即f(η)=η. (2)令φ(x)=[f(x)一x]e
-λx
,则φ(x)在[0,η]上连续,在(0,η)内可导,且φ(0)=0,φ(η)=[f(η)-η]e
-λη
=0.由洛尔定理,存在点ξ∈(0,η)[*](0,1),使得φ’(ξ)=0,即e
-λξ
一λ(f(ξ)一ξ)一1]=0. 从而有f’(ξ)一λ[f(ξ)一ξ]=1.
解析
(1)这是讨论函数在某点取定值的问题,可转化为函数的零点问题.f(η)一η=0,即f(x)一x=0,即F(x)=f(x)一x在
内有零点.
由于待证的结论中不含导数,所以可由介值定理证明.
(2)欲证结论中含有一阶导数,应构造辅助函数用洛尔定理证明.
由f’(ξ)一λ[f(ξ)一ξ]=1,得到f’(x)一λf(x)=1一λx,
再由一阶非齐次线性方程的通解公式得
f(x)=e
∫λdx
[∫(1一λx)e
-∫λdx
dx+c
转载请注明原文地址:https://kaotiyun.com/show/iir4777K
0
考研数学一
相关试题推荐
当x>0时,曲线y=
证明:.
证明拉格朗日中值定理。若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f(ξ)(b一a).
设级数收敛,则()。
若对任意t>0,有f(tx,ty)=t"(x,y),则称函数f(x,y)是n次齐次函数.试证:若f(x,y)可微,则f(x,y)是n次齐次函数的充要条件是
求极限
求不定积分∫(arcsinx)2dx3.
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T一T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T一T0成正比.又设T0=20%,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
随机试题
个人因担心某种不良后果或模糊性威胁的出现而产生的不愉快情绪是()
A.胆石症B.急性胰腺炎C.十二指肠溃疡D.输尿管结石E.脾破裂最常致出血性休克的是
甲系某超市员工,一日随超市汽车运送萝卜,途中见路上来往妇女较多,就产生歹意,多次用萝卜向在马路上行走的妇女投掷,寻求刺激,并以此为乐。当汽车行至一大街时,街上行人正匆匆行走,甲见一妇女特别丑,就随手捡起一颗萝卜,向该女子掷去,打中该女子的胸部,该女子受到惊
项目是为完成某一特定工作的临时组织,其基本特征是()。
中标人将中标项目转让给他人的,将中标项目肢解后分别转让给他人的,转让、分包无效,处转让、分包项目金额()的罚款。
检验检疫机构对“检验检疫类别”中含有( )的商品实施进口商品检验。
企业人力资源规划的作用包括()。
19世纪末,后印象主义艺术的主要代表人物是________、________、________和土鲁斯.劳特累克。
存取方法设计是数据库设计的哪一个阶段的任务
Myopinionisasgood______.
最新回复
(
0
)