首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=( )。
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=( )。
admin
2015-11-16
66
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,C表示任意常数,则线性方程组AX=b的通解X=( )。
选项
A、[1,2,3,4]
T
+C[1,1,1,1]
T
B、[1,2,3,4]
T
+C[0,1,2,3]
T
C、[1,2,3,4]
T
+C[2,3,4,5]
T
D、[1,2,3,4]
T
+C[3,4,5,6]
T
答案
C
解析
[解题思路] 根据非齐次线性方程组通解的结构,依次求出其导出组的基础解系及自身的一个特解。
解一 因r(A)=3,n=4,故导出组AX=0的一个基础解系只含n-r(A)=4-3=1个解,又根据非齐次线性方程组的两个解的差为其导出组的解,因而
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)=[2,3,4,5]
T
≠0
为其导出组的一个解,因它不等于0,故[2,3,4,5]
T
为其导出组的基础解系,又显然α
1
为其自身的一个特解,故所求通解为
α
1
+C[2α
1
-(α
2
+α
3
)]=[1,2,3,4]
T
+C[2,3,4,5]
T
,仅(C)入选。
解二 (A)中[1,1,1,1]
T
=α
1
-(α
2
+α
3
),(B)中[0,1,2,3]
T
=α
2
+α
3
及(D)中[3,4,5,6]
T
=3α
1
-2(α
2
+α
3
)都不是AX=0的解,因而乘以任意常数C后不能构成其导出组的基础解系,故选项(A)、(B)、(D)都不正确,仅(C)入选。
转载请注明原文地址:https://kaotiyun.com/show/DFw4777K
0
考研数学一
相关试题推荐
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
求圆弧χ2+y2=a2(≤y≤a)绕y轴旋转一周所得球冠的面积.
设f(x)在(a,b)四次可导,x0∈(a,b)使得f"(x0)=f"’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
试讨论函数g(x)=在点x=0处的连续性.
求数列极限:(Ⅰ)(M>0为常数);(Ⅱ)设数列{χn}有界,求.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
求常数项级数的和:
随机试题
供方不能交货的通用产品,应向需方偿付违约金,其违约金为不能交货部分货款总值的()。
A、Borrowsomejazzrecords.B、Buyaband-concertticket.C、Makeadonation.D、Lendthemansomemoney.Ctakingupacollectionf
羊水中的脂肪细胞出现率达到多少反映胎儿皮肤成熟
治疗休克阳气暴脱证应首选
在下列实际进度与计划进度的比较方法中,()既可以用来比较进度计划中工作的实际进度与计划进度,也可以根据进度偏差预测其对总工期及后续工作的影响程度。
反映生产工人在正常施工条件下的劳动效率,表明每个工人在单位时间内为生产合格产品所必需消耗的劳动时间,或在一定的劳动时间中所生产的合格产品数量的是()
【2015年河南新乡.多选】考试焦虑是学生常见的一种以担心紧张或忧虑为特点的复杂而延续的情绪状态,缓解考试焦虑的方法有()。
关于我国古代天文学,下列表述错误的是()。
我国行政诉讼的一个突出特点是人民法院依法审查具体行政行为的()。
“有用即真理”是()
最新回复
(
0
)