首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
admin
2015-11-16
33
问题
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
选项
答案
证一 设[*],其中α
j
为A的行向量,B=[b
ij
]
r×r
,则[*], 其中β
j
为BA的行向量,则 [*] 因α
1
,α
2
,…,α
r
线性无关,且B为满秩矩阵,即 r(B)=r=向量组(β
1
,β
2
,…,β
r
)的个数, 故β
1
,β
2
,…,β
r
线性无关。 因α
j
为某齐次线性方程组的基础解系,则因β
1
,β
2
,…,β
r
均为α
1
,α
2
,…,α
r
的线性组合,故β
1
,β
2
,…,β
r
也必为该齐次线性方程组的r个解,又它们线性无关,所以β
1
,β
2
,…,β
r
即BA的r个行向量也为该齐次方程组的一个基础解系。 证二 设α
j
(j=1,2,…,r)为齐次方程组X
T
C=0的一个基础解系(X
T
为行向量,α
j
也为行向量),则α
j
c=0,其中c为C的任意列向量,则b
1j
α
j
c=0(j=1,2,…,r),因而[*]。同理有 [*](i=1,2,…,r)。 即BA的r个行向量均为X
T
C=0的解。 又因B可逆,故秩(BA)=秩(A)=r,BA的r个行向量线性无关,所以BA的r个行向量也形成该齐次方程组X
T
C=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/IFw4777K
0
考研数学一
相关试题推荐
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)=f(x0)=hf’(x0+θh),(0<θ<1).求证:
设z=f(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续二阶偏导数,求
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵是否是正定矩阵.
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
写出下列级数的通项:
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设函数f(x)在(-∞,+∞)内具有二阶连续导数,证明:f”(x)≥0的充分必要条件是对不同实数a,b,
由题设知,X1,X2,…,Xn独立同总体X的分布,所以Xi的密度函数为p(xi,λ),[*]
随机试题
年物价水平上升速率在<)以内,称为爬行式的通货膨胀。
临时性结构的设计使用年限是()
会计行政法规是会计法律制度的一个重要组成部分,下列各项中,属于会计行政法规的是()。
非寿险准备金主要分为()
试述直流主轴电动机与普通直流电动机的主要区别。
下面关于人民币零存整取存款计结息方式选择的说法,错误的是()。
()是起源于临床心理和精神病治疗法的品德测评方法。
在一些国际会议上,同声翻译人员使用的记忆是()
把下图知觉为圆形时,遵循的知觉组织原则是()。(2007年)
WithinAustralia,AustralianHotelsInc.(AHI)operatesninehotelsandemploysover2,000permanentfull-timestaff,300perman
最新回复
(
0
)