首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
admin
2015-11-16
56
问题
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
选项
答案
证一 设[*],其中α
j
为A的行向量,B=[b
ij
]
r×r
,则[*], 其中β
j
为BA的行向量,则 [*] 因α
1
,α
2
,…,α
r
线性无关,且B为满秩矩阵,即 r(B)=r=向量组(β
1
,β
2
,…,β
r
)的个数, 故β
1
,β
2
,…,β
r
线性无关。 因α
j
为某齐次线性方程组的基础解系,则因β
1
,β
2
,…,β
r
均为α
1
,α
2
,…,α
r
的线性组合,故β
1
,β
2
,…,β
r
也必为该齐次线性方程组的r个解,又它们线性无关,所以β
1
,β
2
,…,β
r
即BA的r个行向量也为该齐次方程组的一个基础解系。 证二 设α
j
(j=1,2,…,r)为齐次方程组X
T
C=0的一个基础解系(X
T
为行向量,α
j
也为行向量),则α
j
c=0,其中c为C的任意列向量,则b
1j
α
j
c=0(j=1,2,…,r),因而[*]。同理有 [*](i=1,2,…,r)。 即BA的r个行向量均为X
T
C=0的解。 又因B可逆,故秩(BA)=秩(A)=r,BA的r个行向量线性无关,所以BA的r个行向量也形成该齐次方程组X
T
C=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/IFw4777K
0
考研数学一
相关试题推荐
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=ψ(x)在x=a处取得极值b=ψ(a)的必要条件是f(a,b)=0,fx’(a,b)=0,fy’(a,b)≠0.且当r(a,b)>0时,b=ψ(a)是极大值
求
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B)(E+AB)-1A].
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
求极限.
求不定积分
已知二次型f(x1,x2,x3)=(1-a)x21+(1-a)x22+2x23+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设函数y=y(x)由参数方程确定,则曲线y=y(x)在t=1对应点处的曲率半径R=()
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
随机试题
下面函数的功能是()。sss(s,t)char*s,*t;{while(*s);while(*t)*(s++)=*(t++);returns;}
国家海洋局发布《2012年全国海水利用报告》,报告指出,截至2012年底,全国已建成海水淡化工程________个,其中最大的海水淡化工程规模达到日产20万吨。()
A.1/4B.1/3C.2/3D.1/5E.1/2前磨牙鸠尾峡的宽度一般为面宽度的
患者男性,57岁,心悸,乏力,心绞痛,心电图示前间壁心肌梗死超声心动图上诊断冠心病的主要依据是
A.证候相兼B.证候错杂C.证候真假D.证候转化E.合病并病
哪一条不符合儿童运动发育规律
下列关于企业所得税税率的说法,错误的是()。
设计任务:请阅读下面学生信息和语言素材,设计一节英语读写课的教学方案。教案没有固定格式,但须包含下列要点:teachingobjectivesteachingcontentskeyanddifficultpoints
苏轼评价王维的诗“诗中有画,画中有诗”,这一思维过程属于()。
Thismeansthatyoucan’toutsourcetechsupport;thetechnicianshavetoberightthereatthesamestreetaddressasthedevel
最新回复
(
0
)