(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)

admin2018-04-18  21

问题 (1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a).
求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c);
(2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ε,使f〞(ε)=g〞(ε);
(3)设f(x)在[0,4]上二阶可导,且f(0)=0,f(1)=1,f(4)=2,证明存在一点ε∈(0,4)使得f〞(ε)=-1/3.

选项

答案证:(1)令F(x)=f(x)-g(x),显然F(x)在[a,b]上满足罗尔定理的条件,因此在(a,b)内至少存在一点c,使Fˊ(c)=0,即fˊ(c)=gˊ(c). (2)在[a,c]上考虑函数f(x)和g(x).则f(x)、g(x)满足(1)的结论的条件,所以,存在ε1∈(a,c),使得fˊ(ε1)=gˊ(ε1):同理存在点ε2∈(c,b),使得 fˊ(ε2)=gˊ(ε2). 记h(x)=fˊ(x),k(x)=gˊ(x),在[ε1,ε2]上考虑h(x),k(x),则h(x),k(x)满足(1)的结论的条件,所以,存在ε∈(ε1,ε2)∈(a,b),使得hˊ(ε)=kˊ(ε),即f〞(ε)=g〞(ε). (3)首先定义一个二次函数;y=g(x)=Ax2-Bx+C.使g(0)=0,g(1)=1,g(4)=2.得g(x)=-1/6x2+7/6x,这样,g(0)=f(0),g(1)=f(1),g(4)=f(4),根据(2)的结论,存在ε∈(0,4),使得f〞(ε)=g〞(ε),而g〞(ε)=-1/3,所以f(ε)=-1/3.

解析
转载请注明原文地址:https://kaotiyun.com/show/ikk4777K
0

随机试题
最新回复(0)