首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
admin
2018-04-18
26
问题
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a).
求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c);
(2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ε,使f〞(ε)=g〞(ε);
(3)设f(x)在[0,4]上二阶可导,且f(0)=0,f(1)=1,f(4)=2,证明存在一点ε∈(0,4)使得f〞(ε)=-1/3.
选项
答案
证:(1)令F(x)=f(x)-g(x),显然F(x)在[a,b]上满足罗尔定理的条件,因此在(a,b)内至少存在一点c,使Fˊ(c)=0,即fˊ(c)=gˊ(c). (2)在[a,c]上考虑函数f(x)和g(x).则f(x)、g(x)满足(1)的结论的条件,所以,存在ε
1
∈(a,c),使得fˊ(ε
1
)=gˊ(ε
1
):同理存在点ε
2
∈(c,b),使得 fˊ(ε
2
)=gˊ(ε
2
). 记h(x)=fˊ(x),k(x)=gˊ(x),在[ε
1
,ε
2
]上考虑h(x),k(x),则h(x),k(x)满足(1)的结论的条件,所以,存在ε∈(ε
1
,ε
2
)∈(a,b),使得hˊ(ε)=kˊ(ε),即f〞(ε)=g〞(ε). (3)首先定义一个二次函数;y=g(x)=Ax
2
-Bx+C.使g(0)=0,g(1)=1,g(4)=2.得g(x)=-1/6x
2
+7/6x,这样,g(0)=f(0),g(1)=f(1),g(4)=f(4),根据(2)的结论,存在ε∈(0,4),使得f〞(ε)=g〞(ε),而g〞(ε)=-1/3,所以f(ε)=-1/3.
解析
转载请注明原文地址:https://kaotiyun.com/show/ikk4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
设二元函数z=xex+y+(x+1)ln(1+y),则dx|(1,0)=________.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
(2009年试题,一)当x→0时,f(x)=x一sinax与g(x)=x2ln(1一bx)为等价无穷小,则()。
微分方程yy’+y’2=0满足初始条件的特解是________.
设函数,问a为何值时,f(x)在x=0处连续;n为何值时,x=0是f(x)的可去间断点?
求函数在区间(0,2π)内的间断点,并判断其类型.
设讨论f(x)的连续性,若有间断点并指出间断点的类型;
随机试题
催泪弹属于警械。
大秦艽汤中配伍白芷的主要用意是
根据《城乡规划法》第十七条规定,城市总体规划、镇总体规划的强制性内容不包括()
按是否考虑资金的时间价值,投资方案经济效果评价方法分为()。
不属于DRB方式工作程序的有( )。
下列不属于外资银行营业性机构的是()。
下列选项中,不属于鉴定成本的是()。
污名认同,是指一个社群或族群对自己产生负面的认同感,因而竭力排斥自己的母文化及表征,并向另一文化迅速靠拢或同化。根据上述定义,下列不属于污名认同的是:
定义:①性善论:认为人性本来就是善的。②怀疑论:指对客观世界和客观真理是否存在、能否认识表示怀疑。③快乐论:主张快乐是人生的虽高幸福,追求快乐是人生的目的与道德的标准。典型例证:(1)有人说:“从人之性,顺
A、 B、 C、 D、 BUPS的中文译名是不间断电源。
最新回复
(
0
)