首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
admin
2018-04-18
42
问题
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a).
求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c);
(2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ε,使f〞(ε)=g〞(ε);
(3)设f(x)在[0,4]上二阶可导,且f(0)=0,f(1)=1,f(4)=2,证明存在一点ε∈(0,4)使得f〞(ε)=-1/3.
选项
答案
证:(1)令F(x)=f(x)-g(x),显然F(x)在[a,b]上满足罗尔定理的条件,因此在(a,b)内至少存在一点c,使Fˊ(c)=0,即fˊ(c)=gˊ(c). (2)在[a,c]上考虑函数f(x)和g(x).则f(x)、g(x)满足(1)的结论的条件,所以,存在ε
1
∈(a,c),使得fˊ(ε
1
)=gˊ(ε
1
):同理存在点ε
2
∈(c,b),使得 fˊ(ε
2
)=gˊ(ε
2
). 记h(x)=fˊ(x),k(x)=gˊ(x),在[ε
1
,ε
2
]上考虑h(x),k(x),则h(x),k(x)满足(1)的结论的条件,所以,存在ε∈(ε
1
,ε
2
)∈(a,b),使得hˊ(ε)=kˊ(ε),即f〞(ε)=g〞(ε). (3)首先定义一个二次函数;y=g(x)=Ax
2
-Bx+C.使g(0)=0,g(1)=1,g(4)=2.得g(x)=-1/6x
2
+7/6x,这样,g(0)=f(0),g(1)=f(1),g(4)=f(4),根据(2)的结论,存在ε∈(0,4),使得f〞(ε)=g〞(ε),而g〞(ε)=-1/3,所以f(ε)=-1/3.
解析
转载请注明原文地址:https://kaotiyun.com/show/ikk4777K
0
考研数学二
相关试题推荐
微分方程y〞-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
设矩阵且|A|=-1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(-1,-1,1)T,求a,b,c及λo的值.
A、a2B、a2f(a)C、0D、不存在B
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)等价无穷小,则().
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
设矩阵A=,且秩r(A)=3.则k=__________.
(2009年试题,一)当x→0时,f(x)=x一sinax与g(x)=x2ln(1一bx)为等价无穷小,则()。
(1)比较∫01|lnt|[ln(1+t)]ndt与∫01t2|lnt|dt(n=1,2,…)的大小,说明理由;(2)记un=∫01|lnt|[ln(1+t)ndt(n=1,2,…),求极限.
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)