首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(2,1,2,3)T,α2=(一1,1,5,3)T,α3=(0,一1,一4,一3)T,α4=(1,0,一2,一1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
设α1=(2,1,2,3)T,α2=(一1,1,5,3)T,α3=(0,一1,一4,一3)T,α4=(1,0,一2,一1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
admin
2017-10-21
20
问题
设α
1
=(2,1,2,3)
T
,α
2
=(一1,1,5,3)
T
,α
3
=(0,一1,一4,一3)
T
,α
4
=(1,0,一2,一1)
T
,α
5
=(1,2,9,8)
T
.求r(α
1
,α
2
,α
3
,α
4
,α
5
),找出一个最大无关组.
选项
答案
以α
1
,α
2
,α
3
,α
4
,α
5
为列向量作矩阵A,用初等行变换把A化为阶梯形矩阵: [*] 于是r(α
1
,α
2
,α
3
,α
4
,α
5
)=3.α
1
,α
2
,α
4
是α
1
,α
2
,α
3
,α
4
,α
5
的一个最大无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/ipH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设向量组α1,α2,α3,α4线性无关,则向量组().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为,求属于λ2=λ3=2的另一个特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
随机试题
行政机关实施行政强制措施时,现场笔录应由当事人和行政执法人员签名或者盖章,当事人拒绝的,在笔录中予以注明。()
患者,男性,40岁。突然头痛、呕吐、眩晕、复视,很快进入意识障碍,四肢瘫痪,双侧瞳孔“针尖样”缩小。其最可能的疾病是
预防鸡住白细胞虫病可选用的药物是
属于标记抗体技术的是
上例患者宜选用何方药治疗
女,37岁,自缢后呼吸、心跳停止,经抢救复苏后,为防治脑水肿给予脱水、降温治疗,维持肺功能稳定。关于降温治疗,不正确的是
2006年FIDIC年会在匈牙利布达佩斯举行,其主题是()。
()是当今世界最先进、最有影响力和代表性的卓越绩效评价准则。
简述高校的办学自主权。
Thewriterappliedforthejobbecause______.Thelengthofhisinterviewmeantthat______.
最新回复
(
0
)