首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2022-04-07
104
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明:α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠0,所以Aα=-(k
1
/k
2
),与已知矛盾,所以α,Aα线性无关. (2)由A
2
α+Aα-6α=0.得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|·|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aa=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/j1R4777K
0
考研数学三
相关试题推荐
-2
A、 B、 C、 D、 C
已知某产品总产量的变化率为问:(1)投产多少年后可使平均产量达最大值,此最大值是多少?(2)在达到平均年产量最大时,再生产3年,求这3年的平均年产量.
a≠b
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y为多少时,产量Q最大,并求最大产量.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
随机试题
下列关于法律效力层级和法律冲突解决的说法,正确的是
枫叶服装有限公司采用进口面料和引进的进口设备独家设计出枫叶牌服装。公司业务员将该服装样品送到绿岛商场,商场进货人员看货后表示满意,愿意从枫叶服装有限公司购进此种服装2000套,但该公司存货只有500套,双方签订如下合同:由枫叶服装有限公司在15日内备齐20
关于农村土地调查,下列说法错误的有()。
有一条380V动力线路,Ijs=100A,Iif=400A,UN=380V,此线路首端的=8.5kA,当地环境温度为30℃。试选择此线路的BV型导线的截面及穿钢管线路上装设的DW15型低压断路器及其过流脱扣器的规格。
查询所有现金付款凭证。
会计计量属性主要包括()。
下列词语中加下划线的字,韵母相同的是()。
毛泽东思想形成的时代条件是()
A、Bostonschools.B、Frontierlife.C、Teachingrequirements.D、Immigrationpatterns.B
A、He’stootalkativetobeaboss.B、Hedoesn’tsupporttheprogramatall.C、Heshouldn’tshowsupportonlyinwords.D、He’sgo
最新回复
(
0
)