首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求 A的特征值和特征向量.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求 A的特征值和特征向量.
admin
2019-08-06
89
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,满足a
T
β=0,记n阶矩阵A=αβ
T
.求
A的特征值和特征向量.
选项
答案
①求A的特征值. 解一 设Aα=λα(α≠0),则A·Aα=λAα=λ
2
α,即λ
2
α=0.因α≠0,故λ=0,即A的所有特征值等于0. 解二 由A=αβ得秩(A)≤秩(α)=1,又A≠O,秩(A)≥1,故秩(A)=1.由命题2.5.1.5知,A的n个特征值为 λ
1
=λ
1
=…=λ
n-1
, [*] 解三 因为A为幂零矩阵,由命题2.5.1.9知,其特征值都为0. ②下面求A的属于λ=0的特征向量.为此解(0E—A)X=0,即AX=0. 因α,β≠0,不妨设a
1
≠0,b
1
≠0,用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 故一个基础解系含n-秩(A)=n-1个解向量,即 α
1
=[-b
2
/b
1
,1,0,…,0]
T
,α
2
=[-b
3
/b
1
,0,1,0,…,0]
T
,…,α
n-1
=[-b
n
/b
1
,0,…,0,1]
T
, 所以A的属于特征值0的全部特征向量为 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
是不全为O的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/ouJ4777K
0
考研数学三
相关试题推荐
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
设一定收敛.
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
生产某种产品需要投甲、乙两种原料,x1和x2(单位:吨)分别是它们各自的投入量,则该产品的产出量为Q=2xαxβ(单位:吨),其中常数α>0,β>0且α+β=1.如果两种原料的价格分别为p1与p2(单位:万元/吨).试问,当投入两种原料的总费用为P(单位:
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
设A,B是n阶矩阵,则下列结论正确的是()
随机试题
支气管扩张病变可分为:
以下药物停药后会损害食管的有()。
工程各参建单位填写的工程档案应以( )等为依据。
()是指销售产品或者提供服务取得的收入,是项目运营期现金流入的主体。
根据《水利水电工程标准施工招标文件》,由于发包人责任引起的工期延误事件发生后,若发包人要求承包人修订的进度计划仍应保证工程按期完工,则由于采取赶工措施所增加的费用应由()承担。
在工作中,团结合作原则要求银行业从业人员应该树立()。
从科学史看,理论再伟大,也只有在特定的范围内才是正确的。标准模型虽然即将被证实,但其依然位于微观世界,无法解释宏观世界中的万有引力。《新科学家》撰文写道:“希格斯玻色子(也称为‘上帝粒子’)是标准模型的最后一块拼图,但我们知道,这个模型之外,还有其他的粒子
ItisgenerallyrecognizedintheworldthatthesecondGulfWarinIraqisacrucialtestofhigh-speedWeb.Fordecades,Ameri
假设EXAM.DOC文件夹存储在EXAM1文件夹中,EXAM2文件夹存储在EXAM1文件夹中,EXAM1文件夹存储在D盘的根文件夹中,当前文件夹为EXAM2,那么,正确描述EXAM.DOC文件的相对路径为(41)。
Asthemountainswerecoveredwitha______ofcloud,wecouldn’tseetheirtops.
最新回复
(
0
)