首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求 A的特征值和特征向量.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求 A的特征值和特征向量.
admin
2019-08-06
111
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,满足a
T
β=0,记n阶矩阵A=αβ
T
.求
A的特征值和特征向量.
选项
答案
①求A的特征值. 解一 设Aα=λα(α≠0),则A·Aα=λAα=λ
2
α,即λ
2
α=0.因α≠0,故λ=0,即A的所有特征值等于0. 解二 由A=αβ得秩(A)≤秩(α)=1,又A≠O,秩(A)≥1,故秩(A)=1.由命题2.5.1.5知,A的n个特征值为 λ
1
=λ
1
=…=λ
n-1
, [*] 解三 因为A为幂零矩阵,由命题2.5.1.9知,其特征值都为0. ②下面求A的属于λ=0的特征向量.为此解(0E—A)X=0,即AX=0. 因α,β≠0,不妨设a
1
≠0,b
1
≠0,用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 故一个基础解系含n-秩(A)=n-1个解向量,即 α
1
=[-b
2
/b
1
,1,0,…,0]
T
,α
2
=[-b
3
/b
1
,0,1,0,…,0]
T
,…,α
n-1
=[-b
n
/b
1
,0,…,0,1]
T
, 所以A的属于特征值0的全部特征向量为 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
是不全为O的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/ouJ4777K
0
考研数学三
相关试题推荐
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α+α2,α2+Xα3,Yα1线性相关的概率.
随机向区域D:内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与z轴的夹角小于的概率为______.
=______.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求旋转曲面的方程;
设A是3阶实对称矩阵,特征值是0,1,2.如果α1=(1,2,1)T与α2=(1,一1,1)T分别是λ=0与λ=1的特征向量,则λ=2的特征向量是___________.
证明:与基础解系等价的线性无关的向量组也是基础解系.
游客乘电梯从底层到电视塔的顶层观光.电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行.设一游客在早上八点的第X分钟到达底层候梯处,且X在[0,60]上服从均匀分布,求该游客等候时间的数学期望.
设A为m阶方阵,B为n阶方阵,且|A|=a,|B|=b,C=,则|C|=_______.
设α1,α2,…,αs均为n维向量,下列结论不正确的是()
设随机事件A与B互不相容,0<0(A)<1,则下列结论中一定成立的是
随机试题
∫—11(x5+x2)dx=________.
《动物防疫条件审查办法》规定动物饲养场之间的距离应不少于
某男,50岁。咳喘多年,胸闷痰多,痰稀白滑易咯出,舌苔白腻,脉滑。临床辨证为
A.发热、高血压、急性结膜炎B.呃逆、荨麻疹、皮肤瘙痒症C.胃肠痉挛、心绞痛、胆绞痛D.腹泻、痛经、失眠E.盆腔炎、附件炎、痛经耳穴“耳尖”的主治病证是
城市干道网的结构类型为()。
工程造价中多次性计价的流程是()。
Ahundredyearsagoitwasassumedandscientifically"proved"byeconomiststhatthelawsofsocietymakeitnecessarytohave
(46)TheEnglishlanguageisbeingdestroyedbya"deadlyvirusofmanagement-speak"whichhasinfectedthemouthsandmindsofp
Atwhattimedoestheofficeopen?
DistanceLearninginBritainIntimesofinflation,smartinvestorslookforasafehaven.So,withuniversitiescomplaining
最新回复
(
0
)