首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
admin
2022-09-22
78
问题
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,
<0.证明:
(I)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f”(x)+[f’(x)]
2
=0在区间(0,1)内至少存在两个不同的实根.
选项
答案
(I)由于[*]<0,根据极限的保号性,可知[*]δ>0,对[*]x∈(0,δ),有[*]<0,即f(x)<0,其中δ是任意小的正数,可取0<δ<1.从而[*]x
0
∈(0,δ),使得f(x
0
)<0. 又f(x)在[0,1]上具有二阶导数,因此f(x)在[0,1]上连续.由f(x
0
)<0,f(1)>0,根据零点定理,可知至少存在一点ξ∈(x
0
,1),使得f(ξ)=0,即方程f(x)在区间(0,1)内至少存在一个实根.问题得证. (Ⅱ)令F(x)=-f(x)f’(x),则F’(x)=f(x)f”(x)+[f’(x)]
2
. 由于f(x)连续,且[*]存在,而分母趋于零,则[*]f(x)=f(0)=0. 又由(I)知f(ξ)=0,由罗尔定理,可知[*]η∈(0,ξ),使f’(η)=0. 从而 F(0)=f(0)f’(0)=0,F(η)=f(η)f’(η)=0,F(ξ)=f(ξ)f’(ξ)=0. 由罗尔定理知存在η
1
∈(0,η),使F’(η
1
)=0,存在η
2
∈(η,ξ),使F’(η
2
)=0. 因此,可知η
1
和η
2
是方程f(x)f”(x)+[f’(x)]
2
=0的两个不同的实根.问题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/jDf4777K
0
考研数学二
相关试题推荐
设矩阵A与相似,则r(A)+r(A一2E)=__________.
[*]
微分方程y’+ytanx=cosx的通解为y=____________.
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=戈满足条件y(0)=2,y’(0)=0的特解为y=____________。
设区域D为x2+y2≤R2,则
设f(x,y),φ(x,y)在点P0(x0,y0)的某邻域有连续的一阶偏导数且φ’y(x0,y0)≠0.若P0(x0,y0)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则证明条件极值点的必要条件,并说明几何意义.
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
求微分方程2y"+y’一y=(4—6x)e-x。满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
随机试题
sinusoid
城市内按居民居住地区设立的居民委员会与农村按居住地区设立的村民委员会一样,是我国最基层的一级政府。
传统的lP地址(IPv4)表示为一个_________位的无符号二进制数,通常用以圆点连接的四个十进制数表示。
中国共产党各方面建设的基础是()
A.詹姆斯一兰格理论B.坎农一巴德理论C.沙赫特和辛格理论D.评价一兴奋学说E.动力一分化理论情绪状态是认知过程、生理状态和环境因素在大脑皮质中整合的结果,该理论是
大黄酸具有的性质是
供求定理
期货公司应按照()原则传递客户交易指令。
资料一大河啤酒成功地在中国西部一个拥有200万人口的A市经营多年,不仅在该市取得了95%以上市场占有率的绝对垄断,而且在全省的市场占有率也达到了60%以上,成了该省啤酒业界名副其实的龙头老大。但是大河啤酒作为一个老的国有企业在营销人才和方法上都存在一
下列选项中,表述职业道德规范内容准确的是()。[河北省2008年9月三级真题]
最新回复
(
0
)