首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
admin
2022-09-22
84
问题
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,
<0.证明:
(I)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f”(x)+[f’(x)]
2
=0在区间(0,1)内至少存在两个不同的实根.
选项
答案
(I)由于[*]<0,根据极限的保号性,可知[*]δ>0,对[*]x∈(0,δ),有[*]<0,即f(x)<0,其中δ是任意小的正数,可取0<δ<1.从而[*]x
0
∈(0,δ),使得f(x
0
)<0. 又f(x)在[0,1]上具有二阶导数,因此f(x)在[0,1]上连续.由f(x
0
)<0,f(1)>0,根据零点定理,可知至少存在一点ξ∈(x
0
,1),使得f(ξ)=0,即方程f(x)在区间(0,1)内至少存在一个实根.问题得证. (Ⅱ)令F(x)=-f(x)f’(x),则F’(x)=f(x)f”(x)+[f’(x)]
2
. 由于f(x)连续,且[*]存在,而分母趋于零,则[*]f(x)=f(0)=0. 又由(I)知f(ξ)=0,由罗尔定理,可知[*]η∈(0,ξ),使f’(η)=0. 从而 F(0)=f(0)f’(0)=0,F(η)=f(η)f’(η)=0,F(ξ)=f(ξ)f’(ξ)=0. 由罗尔定理知存在η
1
∈(0,η),使F’(η
1
)=0,存在η
2
∈(η,ξ),使F’(η
2
)=0. 因此,可知η
1
和η
2
是方程f(x)f”(x)+[f’(x)]
2
=0的两个不同的实根.问题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/jDf4777K
0
考研数学二
相关试题推荐
设,且z(1,y)=siny,则z(x,y)=______。
设z=f(χ,y)二阶连续可导,且=χ+1,f′χ(χ,0)=2χ,f(0,y)=sin2y,则f(χ,y)=_______.
设y=y(χ,z)是由方程eχ+y+z=χ2+y2+z2确定的隐函数,则=_______.
设A是n阶矩阵,r(A)<n,则A必有特征值______.
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是____________.
设函数f(u)可微,且,则z=f(4x2一y2)在点(1,2)处的全微分dz|(1,2)=___________.
求极限:
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤C.
设二次型f=xTAx=ax12+2x22一x32+8x1x2+2bx1x3+2cx2x3,矩阵A满足AB=O.其中B=判断矩阵A与B是否合同.
随机试题
当事人逾期不履行行政处罚决定的,作出处罚决定的行政机关可以采取每日按罚款数额的3%加处罚款。()
A、青霉素类B、戊巴比妥C、巴比妥D、妥布霉素E、药用炭与血浆蛋白结合率在20%~24%之间中度结合的药物是
每100ml口服补液盐中,碳酸氢钠的含量是()
此电脑租赁公司的广告属于()。电脑租赁公司不给学生姜远办理D型电脑的租赁手续的行为()。
非公开募集基金的募集环节的体现不包括()。
B注册会计师负责对K公司2印9年度财务报表进行审计。在测试K公司内部控制时,B注册会计师遇到下列事项,请代为做出正确的专业判断。B注册会计师应当考虑采取下列措施来增强某些审计程序不被管理层预见或事先了解()。
许慎在《说文解字》中对“形声”所下的定义是:_______,_______。
根据学习的定义,下列属于学习的现象是()
在下列情况中不能适用假释的有()。
设总体X服从正态分布N(0,σ2),而X1,X2,…,X15是取自总体X的简单随机样本,则服从____________分布,分布参数为____________.
最新回复
(
0
)