首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内单调有界,(xn}为数列,下列命题正确的是
设函数f(x)在(一∞,+∞)内单调有界,(xn}为数列,下列命题正确的是
admin
2021-01-19
53
问题
设函数f(x)在(一∞,+∞)内单调有界,(x
n
}为数列,下列命题正确的是
选项
A、若{x
n
}收敛,则{f(x
n
)}收敛.
B、若{x
n
}单调,则{f(x
n
)}收敛.
C、若{f(x
n
)}收敛,则{x
n
}收敛.
D、若{f(x
n
)}单调,则{x
n
}收敛.
答案
B
解析
由于f(x)在(一∞,+∞)上单调有界,若{x
n
}单调,则{f(x
n
)}是单调有界数列,故{f(x
n
)}收敛.
事实上(A)(C)(D)都是错误的,若令x
n
=
=0,即{x
n
}收敛,令
显然f(x)在(一∞,+∞)上单调有界,但{f(x
n
)}不收敛,由于
不存在,故(A)不正确.
若令x
n
=n,f(x):arctanx.显然{f(x
n
)}收敛且单调,但x
n
=n不收敛,故(C)和(D)不正确.
转载请注明原文地址:https://kaotiyun.com/show/LR84777K
0
考研数学二
相关试题推荐
设函数y=f(x)由参数方程(t>-1)所确定,其中φ(t)具有二阶导数,且φ(1)=5/2,φ’(1)=6,已知d2y/dx2,求函数φ(t)。
设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式验证f"(u)+=0;
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。(注:m表
某飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的阻力与飞机的速度成正比(比例系数k=6.0×106)
设f’(x)在[0,1]上连续,且f(1)-f(0)=1.证明:∫01f’2(x)dx≥1.
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
证明:若矩阵A可逆,则其逆矩阵必然唯一.
估计下列积分值:
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
随机试题
我国公民在我国领域之外犯我国刑法规定之罪的,原则上适用我国刑法,但按照我国刑法规定,可以不予追究的是()
简述全球价格战略的种类。
根据抗原抗体反应的特点,以下哪种说法是正确的
患者,男,10岁,有性早熟的临床表现,松果体区及鞍上见直径1.5~2.5cm病灶,为等T1等T2,注射Cd-DTPA后病灶明显强化该病变可能为
需摄取腕关节尺偏位——腕部外展正位的是
在工资系统中,通过自动转账生成机制凭证,实现与账务系统的数据传递。()
根据公司法律制度的规定,公司可以设立子公司,子公司()。
阅读下面材料,回答127~130题。材料一:中国古代思想家说:“夫君者舟也,庶人者水也,水所以载舟,亦所以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料二:十六大政治报告指出:
一、注意事项1.《申论》考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,然后按“申论要求”依次作答。二、给定资料1.保护农
下列关于数据库三级模式结构的叙述中,哪一个是不正确的?
最新回复
(
0
)