首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内单调有界,(xn}为数列,下列命题正确的是
设函数f(x)在(一∞,+∞)内单调有界,(xn}为数列,下列命题正确的是
admin
2021-01-19
49
问题
设函数f(x)在(一∞,+∞)内单调有界,(x
n
}为数列,下列命题正确的是
选项
A、若{x
n
}收敛,则{f(x
n
)}收敛.
B、若{x
n
}单调,则{f(x
n
)}收敛.
C、若{f(x
n
)}收敛,则{x
n
}收敛.
D、若{f(x
n
)}单调,则{x
n
}收敛.
答案
B
解析
由于f(x)在(一∞,+∞)上单调有界,若{x
n
}单调,则{f(x
n
)}是单调有界数列,故{f(x
n
)}收敛.
事实上(A)(C)(D)都是错误的,若令x
n
=
=0,即{x
n
}收敛,令
显然f(x)在(一∞,+∞)上单调有界,但{f(x
n
)}不收敛,由于
不存在,故(A)不正确.
若令x
n
=n,f(x):arctanx.显然{f(x
n
)}收敛且单调,但x
n
=n不收敛,故(C)和(D)不正确.
转载请注明原文地址:https://kaotiyun.com/show/LR84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明向量组α,Aα,…,Ak-1α是线性无关的.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。(注:m表
(91年)设
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,0)上的表达式;
[2013年]设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f′(∈)=1;
(92年)设函数y=y(x)由方程y—xey=1所确定,求的值.
设2关于变量x,y具有连续的二阶偏导数,并作变量变换x=eu+v,y=eu-v,请将方程变换成z关于u,v的偏导数的方程.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
随机试题
关节炎症时引起滑膜液黏稠度减低的原因是
A.知母B.石膏C.栀子D.淡竹叶E.天花粉功能消肿排脓,治疗疮痈肿毒的药物是
善于治霍乱吐泻转筋的药物是
下列选项中,来源于间叶组织的肿瘤是
下列哪些房产免纳房产税?( )
自理报关单位有报关权但没有进出口经营权。
(2010年)企业生产的下列消费品,无需缴纳消费税的是()。
“三清”是道教供奉的至高无上的尊神,其中的“玉清”指的是()。
“中央银行是政府的银行”的含义是指中央银行的产权归属于政府。[对外经济贸易大学2014研]
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
最新回复
(
0
)