首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,+∞)上非负连续,且f(χ)∫0χf(χ-t)dt=2χ3,则f(χ)=_______.
设f(χ)在[0,+∞)上非负连续,且f(χ)∫0χf(χ-t)dt=2χ3,则f(χ)=_______.
admin
2018-02-23
41
问题
设f(χ)在[0,+∞)上非负连续,且f(χ)∫
0
χ
f(χ-t)dt=2χ
3
,则f(χ)=_______.
选项
答案
2χ
解析
∫
0
χ
f(χt)dt
∫
χ
0
f(u)(-du)=∫
0
χ
(u)du,
令F(χ)=∫
0
χ
f(u)du,由f(χ)∫
0
χ
f(χ-t)dt=2χ
3
,得f(χ)∫
0
χ
f(u)du=2χ
3
,
即
=2χ
3
,则F
2
(χ)=χ
4
+C
0
.
因为F(0)=0,所以C
0
=0,又由F(χ)≥0,得F(χ)=χ
2
,故f(χ)=2χ.
转载请注明原文地址:https://kaotiyun.com/show/jJk4777K
0
考研数学二
相关试题推荐
设,则f(x)=__________.
生产某种产品必须投入两种要素,x1与x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两要素的价格分别为声p1和p2,试问当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
某商品的需求量Q对价格P的弹性为一Pln3.已知该商品的最大需求量为1200(即当P=0时,Q=1200),求需求量Q对价格P的函数关系.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2006年试题,二)设f(x,y)为连续函数,则等于().
随机试题
某产妇,产后母乳喂养不顺利,改为人工喂养。产后一周左右产妇出现焦虑情绪,易激惹,有时暗自伤心落泪,伴有失眠、便秘等躯体症状。产后两周时,产妇的情绪越来越低落,回避他人,对自己缺乏信心,并因自己不会照顾小孩而有负罪感,有自杀念头。社区护士应提供的护理措施
A、HethinksBakeristoostrictinclass.B、HethinksBakerisnotstraightforward.C、Hethinkssheisunfair.D、Shedoesnotex
外科急腹症的特点,正确的是
当前城市规划管理工作的重要任务是()。
防水混凝土可通过调整配合比,或掺加外加剂、掺合料等措施配制而成,其抗渗等级不得小于(),其试配混凝土的抗渗等级应比设计要求提高()MPa。
导游的素质要求包括()。
幼儿园选择教育内容的依据是()。
《2016年政府工作报告》指出,改革是引领发展的第一动力,必须摆在国家发展全局的核心位置,深入实施创新驱动发展战略。()
Anewreportclaimsthatthemakersofsugar-laden(含糖)drinkssuchassodas,sportsdrinks,energydrinksandfruitdrinkstaked
A、TheterribleeffectsofdroughtonCalifornia.B、Newtechnologiesusedtopreventwaterwaste.C、Amandatoryorderonwatercu
最新回复
(
0
)