首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T. (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T. (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
admin
2013-09-15
137
问题
设n元线性方程组Ax=b,其中A=
,x=(x
1
,…,x
n
)
T
,b=(1,0,…,0)
T
.
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)a为何值时,方程组有唯一解?求x
1
;
(Ⅲ)a为何值时,方程组有无穷多解?求通解.
选项
答案
(Ⅰ)利用行列式性质,有 [*] (Ⅱ)若使方程组Ax=b有唯一解,则|A|=(n+1)a
n
≠0,即a≠0.则由克莱姆法则得 (Ⅲ)若使方程组Ax=b有无穷多解,则|A|=(n+1)a
n
=0,即a=0. 把a=0代入到矩阵A中,显然有[*]=r(A)=n-1,方程组的基础解系含一个解 向量,它的基础解系为k(1,0,0,…,0)
T
(k为任意常数). 代入a=0后方程组化为[*]特解取为(0,1,0,…,0)
T
,则方程组 Ax=b的通解为k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
,其中的k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4I34777K
0
考研数学二
相关试题推荐
设f1(χ)为标准正态分布的概率密度,f2(χ)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足
当x→0时,用“o(x)”表示比x高阶的无穷小,则下列式子中错误的是
[*]
(2006年)设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x)(,f(2)=1,则f’’’(2)=______.
(05年)设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=_______.
(1998年)设函数,讨论函数f(x)的间断点,其结论为()
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
[2001年]一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg,标准差为5kg,若用最大载重量为5t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(Φ(2)=0.977,其中Φ(x)是
(2008年)设f(x)是周期为2的连续函数.(Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
随机试题
小儿指纹到达命关属于
可摘局部义齿的美学原则不包括下列哪项
某正弦电流则该电流有效值相量=()。
负债筹资的渠道主要有( )。
信息管理手册的主要内容()。
持有可转换公司债券的投资者,若其持有的可转换公司债券全部转为股本与其持有的该公司的股份的合计数,占公司已发行的股份与全部可转换公司债券转为股本的合计数达5%以上,以后每增加或减少1%,或上述比例达到30%以上,该投资者应按中国证监会的有关规定履行信息披露义
从2008年4月24日起,基金买卖股票按照()的税率征收印花税。
显示器、打印机和绘图仪都属于常用的计算机输入设备。()
通常所说的I/O设备指的是()。
Ofalltheareasoflearningthemostimportantisthedevelopmentofattitudes.Emotionalreactionsaswellaslogicalthought
最新回复
(
0
)