首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
admin
2017-05-31
76
问题
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明:
(b-a)∫
a
b
f(x)g(x)dx≥∫
a
b
f(x)dx∫
a
b
g(x)dx. (*)
选项
答案
引进辅助函数 F(x)=(x-a)∫
a
x
f(t)g(t)dt-∫
a
x
f(t)dt∫
a
x
g(t)dt 转化为证明F(x)≥0(x∈[a,b]). 由F(a)=0, F’(x)=∫
a
x
f(t)g(t)dt+(x-a)f(x)g(x)-f(x)∫
a
x
g(t)dt-g(x)∫
a
x
f(t)dt =∫
a
x
f(t)[g(t)-g(x)]dt-∫
a
x
f(x)[[g(t)-g(x)]dt =∫
a
x
[f(t)-f(x)][g(t)-g(x)]dt≥0(x∈[a,b]) 其中(x-a)f(x)g(x)=∫
a
x
f(x)g(x)dt,我们可得F(x)在[a,b]单调不减=>F(x)≥F(a)=0(x∈[a,b]),特别有 F(b)≥0 即原式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/jMt4777K
0
考研数学二
相关试题推荐
设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求dy/dx.
[*]
f’1+xyf"11+(x+y)f"12+f"22
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
设f(x)在[a,b]上连续,证明:∫abf(x)dx∫xbf(x)dy=1/2[∫abf(x)dx]2.
利用定积分计算极限
某厂每批生产某种商品x单位的费用为C(x)=5x+200得到的收益是R(x)=10x-0.01x2问每批生产多少单位时才能使利润最大?
求下列不定积分:
求下列变限积分所定义函数的导数:
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
随机试题
在Excel工作表中,在第3行前插入6行空白行的最简单的操作是:选定第3行,然后单击“插入”菜单中的“行”命令,重复6次。()
潮汐河口现状水质调查比较合理的采样时刻有()。
在Excel中,下列()输入方式输入的是日期型数据。
矿产、地质资源属于()。
恒山位于山西省浑源县境内,为花岗岩山体。()
根据对联的类别,“海纳百川,有容乃大;壁立千仞,无欲则刚”是()。
中共中央、国务院1月9日上午在北京隆重举行国家科学技术奖励大会。习近平向获奖者于敏颁发奖励证书。李克强讲话指出,国家繁荣发展的新动能,就蕴涵于()的伟力之中。
包豪斯的创始人是()。
简述中国特色社会主义法治体系的主要内容。(2018简51、2018法简31)
某类产品n种品牌在某地区的市场占有率常用概率向量u=(u1,u2,…,un)表示(各分量分别表示各品牌的市场占有率,值非负,且总和为1)。市场占有率每隔一定时间的变化常用转移矩阵Pn×n表示。如果在相当长时期内,该转移矩阵的元素均是常数,又设初始时刻的市场
最新回复
(
0
)