首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[—a,a]上的连续偶函数且f(x)>0,令F(x)=∫—aa|x—t|f(t)dt。 (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)—a2—1时,求函数f(x)。
设f(x)为[—a,a]上的连续偶函数且f(x)>0,令F(x)=∫—aa|x—t|f(t)dt。 (Ⅰ)证明F’(x)单调增加; (Ⅱ)当x取何值时,F(x)取最小值; (Ⅲ)当F(x)的最小值为f(a)—a2—1时,求函数f(x)。
admin
2017-12-29
22
问题
设f(x)为[—a,a]上的连续偶函数且f(x)>0,令F(x)=∫
—a
a
|x—t|f(t)dt。
(Ⅰ)证明F’(x)单调增加;
(Ⅱ)当x取何值时,F(x)取最小值;
(Ⅲ)当F(x)的最小值为f(a)—a
2
—1时,求函数f(x)。
选项
答案
(Ⅰ)F(x)=∫
—a
a
|x一t|f(t)dt=∫
—a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt =x∫
—a
x
f(t)dt一∫
—a
x
tf(t)dt+∫
x
a
tf(t)dt — x∫
x
a
f(t)dt =x∫
—a
x
f(x)dt一∫
—a
x
tf(t)dt —∫
a
x
tf(t)dt+x∫
a
x
f(t)dt, F’(x)=f(t)dt+xf(x)一xf(x)一xf(x)+ ∫
a
x
f(t)dt+xf(x)=∫
—a
x
f(t)dt一∫
x
a
f(t)dt。 所以F"(x)=2f(x)>0,因此F"(x)为单调增加的函数。 (Ⅱ)因为F’(0)=∫
—a
0
f(x)dx一∫
0
a
f(x)dx,且f(x)为偶函数,所以F’(0)=0,又因为F"(0)> 0,所以x=0为F(x)的唯一极小值点,也为最小值点,且最小值为 F(0)=∫
—a
a
|t|(t)dt=2∫
0
a
tf(t)dt。 (Ⅲ)由2∫
0
a
tf(t)dt= f(a)一a
2
—1,两边求导得 2af(a)=f’(a)一2a, 于是 f’(x)—2xf(x)=2x, 解得 f(x)=[∫2xe
—∫2xdx
dx+C]e
—∫2xdx
=Cex
2
—1。 在2∫
0
a
tf(t)dt=f(a)一a
2
—1中令a=0得f(0)=1,则C=2,于是 f(x)= 2ex
2
—1。
解析
转载请注明原文地址:https://kaotiyun.com/show/jhX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
设f(x)在(一∞,+∞)内连续,以T为周期,证明:∫0xf(t)dt以T为周期∫0xf(t)dt=0;
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
设=1,a为常数,则=________.
求级数
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
微分方程=0的通解是()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设数列{xn}由递推公式确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
随机试题
在下列开挖方法中,适用于土、石质傍山路堑开挖方法的是()。
习近平2016年2月23日对加强老龄工作做出重要指示强调,有效应对人口老龄化,要()
在培养蘑菇的培养基上长出了根霉,根霉与蘑菇之间的关系属于()。
A.肾血流量减少,肾小球滤过率减,肾小管结构近似正常 B.肾血流量减少,肾小球滤过率增,肾小管结构近似正常 C.肾血流量减少,肾小球滤过率减,肾小管坏死 D.肾血流量减少,肾小球滤过率增,肾小管坏死 E.肾血流量减少,肾小球滤过率正,肾小管坏死
下列有关骨质疏松症的说法,错误的是
土地使用者需要改变土地使用权出让合同约定的土地用途的,必须征得()同意。
间接监控的效果要受到员工对产出的可控性和()的影响。
()指即使托运人实际装箱的货物尺寸超出对集装箱规定的计费吨,承运人仍按对集装箱所规定的计费吨收取运费,超出部分免收运费。
开车、跳舞、滑冰等属于连续的动作技能。()
中国和法国航天合作的首颗卫星——中法海洋卫星(CFOSAT)计划于2018年下半年由长征运载火箭在()发射。
最新回复
(
0
)