首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知三元二次型f=xTAx的秩为2,且 求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
admin
2017-12-29
73
问题
已知三元二次型f=x
T
Ax的秩为2,且
求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
选项
答案
二次型x
T
Ax的秩为2,即r(A)=2,所以λ=0是A的特征值。 [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;一1也是A的特征值,(1,一1,1)
T
是与一1对应的特征向量。 因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,则有 (x
1
,x
2
,x
3
)[*]=0,(x
1
,x
2
,x
3
)[*] 由方程组[*] 解出λ=0的特征向量是(1,0,一1)
T
。 [*] 因此 x
T
=[*](x
1
2
+10x
2
2
+x
3
2
+16x
1
x
2
+2x
1
x
3
+16x
2
x
3
), 令 [*] 则经正交变换x=Qy,有x
T
Ax=y
T
Λy=3y
1
2
一y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jmX4777K
0
考研数学三
相关试题推荐
已知ξ=[1,1,一1]T是矩阵的一个特征向量.A是否相似于对角阵,说明理由.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1.,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T.计算:Anξ1;
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt.证明:∫abxf(x)dx≤∫abxg(x)dx.
计算(a>0是常数).
证明:
设出售某种商品,已知某边际收益是R(x)=(10—x)e-x,边际成本是C(x)=(x2一4x+6)e-x,且固定成本是2,求使这种商品的总利润达到最大值的产量和相应的最大总利润.
证明:级数条件收敛.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对任意给定的正数a,b,在(0,1)内存在不同的点ξ,η,使=a+b.
随机试题
BT——3型扫频仪在使用过程常有哪些不正常现象?
简述教会法的基本渊源。
下列结构不与右肾毗邻的是
A、大细胞性贫血B、正细胞正色素性贫血C、小细胞低色素性贫血D、小细胞正色素性贫血E、大细胞低色素性贫血男性,24岁。活动后心悸、气短1年,皮肤散在出血点,肝、脾未及,血红蛋白65g/L,红细胞2.0X1012/L
关于正、反循环钻孔施工的说法,正确的有()。
某高层宾馆建成后为11层,建筑高度为50m,在建设时要考虑是否设置避难层,根据有关规定,建筑高度超过()的公共建筑和住宅建筑应设置避难层。
以下属于罗马尼亚民间乐曲的是()。
Valentine’sDaymaycomefromtheancientRomanfeastofLupercalia.(1)_____thefiercewolvesroamednearby,theoldRomansca
A、Hersisterisafashionablewoman.B、Hersisterisdesigningadress.C、HersisterisstudyingSpanish.D、Hersisterisinthe
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublication
最新回复
(
0
)