首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
admin
2016-09-13
52
问题
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[fˊ(0)]
2
=4.
试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
选项
答案
f(0)-f(-2)=2fˊ(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=2fˊ(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|fˊ(ξ
1
)|=[*]≤1,|fˊ(ξ
2
)|=[*]≤1. 令φ(x)=f
2
(x)+[fˊ(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φˊ(ξ)=0,即 2f(ξ)fˊ(ξ)+2ˊ(ξ)fˊˊ(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以fˊ(ξ)≠0,于是有f(ξ)+fˊˊ(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/kCT4777K
0
考研数学三
相关试题推荐
b=2/3
A、 B、 C、 D、 B
[*]
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求方程karctanx-x=0不同实根的个数,其中k为参数.
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
求∫013x。arcsinxdx.
设Ik=sinxdx(k=1,2,3),则有()
随机试题
“计件工资奖励工资”的提出者是()
Junglecountryisnotfriendlytoman,butitispossibletosurvivethere.Youmusthavetheright【21】andyoumustknowafewi
A.控制系统B.受控系统C.反馈信息D.控制信息动脉壁上的压力感受器感受动脉血压变化,使相应的传入神经产生的动作电位可看作是
不能用于检测血清总IgE的是()
以下费用中,属于监理直接成本的有( )。
平硐开拓方式与立井、斜井开拓方式的主要区别是()。
A、64B、72C、80D、88D(左下数字-右上数字)×(左上数字-右下数字)=中间数字。(14-3)×(18-10)=(88),故本题选D。
茶树:茶叶:茶水
设L是圆域x2+y2≤-2x的正向边界曲线,则(x3-y)dx+(x-y3)dy等于()。
ThephotographertimedhisvisittoIndonesiato______withtheharvestfestivalthattakesplaceeachyearthroughoutthecoun
最新回复
(
0
)