首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
admin
2016-09-13
39
问题
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[fˊ(0)]
2
=4.
试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
选项
答案
f(0)-f(-2)=2fˊ(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=2fˊ(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|fˊ(ξ
1
)|=[*]≤1,|fˊ(ξ
2
)|=[*]≤1. 令φ(x)=f
2
(x)+[fˊ(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φˊ(ξ)=0,即 2f(ξ)fˊ(ξ)+2ˊ(ξ)fˊˊ(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以fˊ(ξ)≠0,于是有f(ξ)+fˊˊ(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/kCT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
将一平面薄板铅直浸没于水中,取x轴铅直向下,y轴位于水面上,并设薄板占有xOy面上的闭区域D,试用二重积分表示薄板的一侧所受到的水压力.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
甲烷分子CH4由4个氢原子与一个碳原子组成,四个氢原子位于正四面体的四个顶点处,碳原子位于四个氢原子所组成的质点系的质心处.现没正四面体的四个顶点为(1,0,0)、(0,1,0)、(0,0,1)和(1,1,1).(1)试求出碳原子的位置;(2)由H—C—H
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设f(x)=2x+3x一2,则当x→0时().
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u)。
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
平均指示压力:
膝关节()
以下哪项不属于支气管扩张的X线平片表现
下列物质可做气雾剂中的抛射剂的是()
关于药物剂型与给药途径A、同一药物,同一剂型,表现不同B、同一药物,剂型不同,其副作用、毒性不同C、同一药物,剂型不同,药物的作用不同D、同一药物,剂型不同,其作用的快慢、强度、持续时间不同E、同一药物,剂型不同,应用的效果不
A公司为增值税—般纳税人,适用的增值税税率为17%。2011年财务报告于2012年4月30日批准报出。A公司有关销售商品业务如下。(1)2011年12月1日,A公司向甲公司销售—批商品,按价目表上标明的价格计算,其不含增值税额的售价总额为100万元。因属
下列关于职业道德的说法中,正确的是()。
人类迄今认识到,世界万物的变化,可以归结为四种基本力,即引力、排斥力、弱力、强力。()
机会公平包括()
通信技术主要是用于扩展人的()。
最新回复
(
0
)