首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4. 试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
admin
2016-09-13
74
问题
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[fˊ(0)]
2
=4.
试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
选项
答案
f(0)-f(-2)=2fˊ(ξ
1
),-2<ξ
1
<0, f(2)-f(0)=2fˊ(ξ
2
),0<ξ
2
<2. 由|f(x)|≤1知|fˊ(ξ
1
)|=[*]≤1,|fˊ(ξ
2
)|=[*]≤1. 令φ(x)=f
2
(x)+[fˊ(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](-2,2)上取,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φˊ(ξ)=0,即 2f(ξ)fˊ(ξ)+2ˊ(ξ)fˊˊ(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以fˊ(ξ)≠0,于是有f(ξ)+fˊˊ(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/kCT4777K
0
考研数学三
相关试题推荐
[*]
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设β,α1,α2线性相关,β,α2,α3线性无关,则().
溶液从深18cm,顶圆直径12cm的正圆锥形漏斗中漏入一直径为10cm的圆柱形筒中,开始时漏斗中盛满了溶液.已知当溶液在漏斗中高为12cm时,其表面下降的速度为1cm/min.问此时圆柱形筒中溶液表面上升的速率为多少?
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
验证极限存在,但不能用洛必达法则得出.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设f(x)=ln10x,g(x)=x,h(x)=ex/10,则当x充分大时有
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设y=exsinx,求y(n).
随机试题
A.尿镜检红细胞满视野B.尿镜检白细胞满视野C.尿外观正常,镜检可见各种管型D.尿外观酱油色,隐血试验(+)E.尿外观深黄色,含大量胆红素阵发性睡眠性血红蛋白尿【】
一成年雌性动物出现断断续续发情,使整个发情期延长,配种不能受胎。最可能的诊断结论是()。
()是通过相互沟通、调整、联合等方法,使项目涉及的各方配合得当、协同一致,以便顺利实现项目目标。
下列关于企业核心竞争力分析的表述中,正确的有()。
背景资料:某工程包括三个结构形式与建造规模完全一样的单体建筑,施工过程中共五个施工过程组成,分别为:土方开挖、基础施工、地上结构、二次砌筑、装饰装修。根据施工工艺要求,地上结构施工完毕后,需等待两周后才能进行二次砌筑。施工过程中发生了如下事件:事件一
关于管理人或者债务人依照破产法规定解除双方均未履行完毕的合同,下列说法错误的是()。
我国法律禁止未成年人作为购房人购买房屋。()
关于社会化,下面说法正确的是()。
毛泽东基本形成关于中国工业化思想的著作是()
How’sTimnow?
最新回复
(
0
)