首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是( )
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是( )
admin
2014-04-16
62
问题
已知n维向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的基础解系,则向量组aα
1
+bα
4
,aα
2
+bα
3
,aα
3
+bα
2
,aα
4
+bα
1
也是Ax=0的基础解系的充分必要条件是( )
选项
A、a=b.
B、a≠b.
C、a≠b.
D、a≠±b.
答案
D
解析
向量组(Ⅱ)aα
1
+bα
4
,aα
2
+bα
3
,aα
4
+bα
2
,aα
4
+bα
1
均是Ax=0的解.且共4个,故(Ⅱ)是Ax=0的基础解系
(Ⅱ)线性无关,因
(aα
2
+bα
4
,aα
2
+bα
3
,aα
3
+bα
2
,aα
1
+bα
1
)=(α
1
,α
2
,α
3
,α
4
)因α
1
,α
2
,α
3
,α
4
线性无关,则aα
1
+bα
2
,aα
2
+bα
3
,aα
3
+bα
4
,aα
4
+bα
1
线性无关
故应选D.B,C是充分条件,并非必要,A既非充分又非必要.均应排除.
转载请注明原文地址:https://kaotiyun.com/show/kX34777K
0
考研数学二
相关试题推荐
(10年)设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_______.
[2008年]设D={(x,y)|x2+y2≤1},则
设矩阵且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
(1989年)求微分方程y’’+5y’+6y=2e-x的通解.
证明对于不等式成立.
在曲线y=x2(x≥0)上一点M处作切线,使得切线、曲线及x轴所围成的平面图形D的面积为求:(1)切点M的坐标;(2)过切点M的切线方程.
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:曲线y=f(x)的上凸(或下凹)区间为___________.
设y0=2e-x+xe-2x为三阶常系数齐次线性微分方程y"’+py"+qy’+ry=0的一个特解,且f(x)是该方程满足初始条件f(0)=-2,f’(0)=7,f"(0)=-18的特解,则∫0+∞f(x)dx=________。
设则().
设f(x)是区间上的正值连续函数,且若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
随机试题
临床上,经过治疗也不能保存的第一恒磨牙最佳拔除时间范围宜在
A、黄芩苷B、黄芩素C、槲皮素D、槲皮素-7-O-葡萄糖苷E、矢车菊素不易溶于水易溶于NaHCO3的苷是
关于信用证支付,下列说法错误的是?()
下列说法错误的是()。
在素质测评中,常用的对员工进行分类的标准有()。
在培养学生问题解决能力时,教师做法错误的是()。
很多孩子只能听赞美之词,听不得半点反对意见;有的孩子外表高傲,内心脆弱,敏感多疑。他们遇到一些不顺心的事情,就会有极端的举动,这就是所谓的“蛋壳心理”。过分骄纵、百般溺爱是导致这种心理的最直接原因。建议父母在孩子顺心的成长道路上制造一点挫折,让孩子学会在逆
由清末民初实利主义、实用主义教育思想发展而来,适应中国民族资本主义发展的需要,提出教育要授人以一技之长和促进实业发展的教育思潮是()。
CorporateReceptionistWantedAbouttheJobHTStaffingisseekingaCorporateReceptionistintheWestLakeHillsarea.We
OneofAmerica’smostimportant【B1】______ishermodernmusic.Americanpopularmusicisplayedallovertheworld.Itisenjoye
最新回复
(
0
)