首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=________。
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=________。
admin
2019-03-23
20
问题
设A为n阶方阵,任何n维列向量都是方程组
的解向量,则R(A)=________。
选项
答案
0
解析
已知任何n维列向量都是此方程组的解,故n维基本单位向量组ε
1
=(1,0,0,…,0)
T
,ε
2
=(0,1,0,…0)
T
,…,ε
n
=(0,0,0,…,1)
T
也是它的解,即A(ε
1
,ε
2
,…,ε
n
)=AE=0,故有A=O,所以R(A)=0。
转载请注明原文地址:https://kaotiyun.com/show/kXV4777K
0
考研数学二
相关试题推荐
下列矩阵中不能相似对角化的是
A=,r(A)=2,则()是A*X=0的基础解系.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
随机试题
关于片剂包衣目的下列说法错误的是()。
甲与乙签订房屋买卖合同,将一幢房屋卖与乙。双方同时约定,一方违约应支,付购房款35%的违约金。但在交房前甲又与丙签订合同,将该房卖与丙,并与丙办理了过户登记手续。下列说法中正确的是()。
下列各项中,按“财产转让所得”项目计征个人所得税的有()。
蔡邕创制了中国四大名琴之一的()。
下列有关《中华人民共和国宪法修正案》中土地政策的说法,不正确的是()。
节能:减排:环保相当于()。
以下社会组织属于财团法人的是()。
设L为从0(0,0)沿曲线到点A(1,1)的曲线,则曲线积分,2y)dy=
_彼が左利きかどうか、もしそうなら間違いなく彼が本当の犯人だ。
Whyisariversorich?
最新回复
(
0
)