设f(x)在[a,b]上连续,证明:∫abf(x)dx∫abf(y)dy=[∫abf(x)dx]2.

admin2016-10-13  21

问题 设f(x)在[a,b]上连续,证明:∫abf(x)dx∫abf(y)dy=[∫abf(x)dx]2

选项

答案令F(x)=∫axf(t)dt, 则∫abf(x)dx∫xbf(y)dy=∫abf(x)[F(b)一F(x)]dx =F(b)∫abf(x)dx—∫abf(x)F(x)dx=F2(b)一∫abF(x)dF(x) =F2(b)一[*][∫abf(x)dx]2

解析
转载请注明原文地址:https://kaotiyun.com/show/kbu4777K
0

相关试题推荐
最新回复(0)