首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1-α2, α1-2α2+α3,(α1-α3), α1+3α2-4α3, 是导出组Ax=0的解向量的个数为 ( )
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1-α2, α1-2α2+α3,(α1-α3), α1+3α2-4α3, 是导出组Ax=0的解向量的个数为 ( )
admin
2016-09-19
89
问题
设α
1
,α
2
,α
3
均为线性方程组Ax=b的解,下列向量中
α
1
-α
2
, α
1
-2α
2
+α
3
,
(α
1
-α
3
), α
1
+3α
2
-4α
3
,
是导出组Ax=0的解向量的个数为 ( )
选项
A、4
B、3
C、2
D、1
答案
A
解析
由Aα
1
=Aα
2
=Aα
3
=b可知
A(α
1
-α
2
)=Aα
1
-Aα
2
=b-b=0,
A(α
1
-2α
2
+α
3
)=Aα
1
-2Aα
2
+Aα
3
=b-2b+b=0,
=0,
A(α
1
+3α
2
-4α
3
)=Aα
1
+3Aα
2
-4Aα
3
=b+3b-4b=0,
因此这4个向量都是Ax=0的解,故选(A).
转载请注明原文地址:https://kaotiyun.com/show/ktT4777K
0
考研数学三
相关试题推荐
[*]
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
(1)怎样建立向量a与有序数组ax、ay、az之间的一一对应关系?数ax、ay、az的几何意义是什么?(2)分别叙述两个向量a、b平行和垂直的充要条件,并给出充要条件的坐标表示式.(3)叙述三个向量a、b、c共面的充要条件,并给出充要条件的坐标表示式.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
建设工程在开工阶段出现的下列情况中,不能顺延工期的是()。
企业按照市场价格向个人出租用于居住的住房,在计算房产税时适用的税率为()。
学生伤害事故应当遵循依法、客观公正、()的原则,及时、妥善处理。
“会当凌绝顶,一览众山小”是杜甫《望岳》中赞美黄山的诗句。()
Childrenmodelthemselveslargelyontheirparents.Theydosomainlythroughidentification.Childrenidentify【C1】______apar
Ifyouhavehighbloodpressure,you’reingood【C1】________.Hypertensionaffects67millionAmericans,includingnearlytwo-thi
在数据库设计中,将E-R图转换成关系数据模型的过程属于()。
请在【答题】菜单下选择【进入考生文件灾】命令,并按照题日要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。中国的人口发展形势非常严峻,为此国家统计局每10年进行一次全国人口普查,以掌握全闻人口的增长速度及规模。按照下列要求完成对第五次、第六
"WearenotabouttoentertheInformationAge,butinsteadareratherwellintoit."Presentpredictionsarethatby1990,ab
Populationshave3agents,namely,abirthrate,adeathrate,andagrowthrate.Theshort-lived,rapidlydispersedspeciesar
最新回复
(
0
)