首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-01-22
60
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解.若α
1
+α
2
+α
3
+=(0,6,3,9)
T
,2α
2
一α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(一1,3,0,6)
T
C、(1.3.3,3)
T
+k(1,1,2,0)
T
D、(一1,3,0,6)
T
+k(一2,0,一3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)一3(2α
2
一α
3
)=(α
1
一α
2
)+4(α
3
一α
2
)=(一3,一3,一6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
一α
3
=α
2
+(α
2
一α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/kxw4777K
0
考研数学一
相关试题推荐
设A=,求A的特征值,并证明A不可以对角化.
设方程组有解,则α1,α2,α3,α4满足的条件是________.
设A是m×n阶矩阵,下列命题正确的是().
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
反常积分
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设Σ是球面x2+y2+z2=R2的外侧,则第二类曲面积分=________.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
设f(x)=x3一3x+k只有一个零点,则k的取值范围是().
随机试题
A.吊销执业证书B.予以取缔C.给予警告D.追究刑事责任E.承担赔偿责任
如图所示,一半圆形闭合线圈通有电流I=10A,半径R=0.1m,放在匀强磁场B=0.5T中,当磁场方向与线圈平面平行时,线圈所受的磁力矩为()
肝破裂的特点是(请从以下5个备选答案中选出4个正确选项)
颈外静脉输液结束时采用的封管溶液为
背景某电缆输配电工程公司承接了一段30km长的直埋电缆敷设项目,电缆由业主提供,工期2个月,每拖延工期一天罚款3000元。考虑工期较为紧张,在土方开挖期间,该工程公司组织5名具有操作资质的员工驾驭挖掘机(其中No.5为外租的一辆)分段进行开挖,一
双新村与长福村相邻。2004年,两村因交界处50亩土地的使用权发生纠纷。县政府为此专门召开协调会,并形成一份“会议纪要”。“会议纪要”明确了两村对争议土地各自使用的面积和范围,县政府则根据这份“会议纪要”作出了有关决定。2009年12月,双新村村民葛某因需
按照职业操守规定,银行业从业人员()为其他岗位人员代为履行职责。
理财业务是经()批准的一项银行巾间业务。
2000年,宏发投资基金的基金总值的40%用于购买债券。近几年来,由于股市比较低迷,该投资基金更加重视投资债券。在2004年,其投资基金的60%都用于购买债券。因此,认为该投资基金购买债券比过去减少的观点是站不住脚的。以下哪项如果为真,最能削弱上
可以用来表示两种事物之间相关性的统计图是()。
最新回复
(
0
)