首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-01-22
86
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解.若α
1
+α
2
+α
3
+=(0,6,3,9)
T
,2α
2
一α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(一1,3,0,6)
T
C、(1.3.3,3)
T
+k(1,1,2,0)
T
D、(一1,3,0,6)
T
+k(一2,0,一3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)一3(2α
2
一α
3
)=(α
1
一α
2
)+4(α
3
一α
2
)=(一3,一3,一6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
一α
3
=α
2
+(α
2
一α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/kxw4777K
0
考研数学一
相关试题推荐
设A=,求A的特征值,并证明A不可以对角化.
设A是m×n阶矩阵,则下列命题正确的是().
设四阶矩阵B满足BA-1-2AB+E,且A=,求矩阵B.
向量组α1,α2,α3,…,αm线性无关的充分必要条件是()。
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于()。
设u=u(x,y,z)连续可偏导,令若,证明:u仅为θ与ψ的函数。
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设f(x)=,求f(x)的连续区间及间断点.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
在PowerPoint2010中,要实现在播放时幻灯片之间的跳转,可采用的方法是_____。
轻度先天性上睑下垂行手术矫治的时间宜在
血清清蛋白明显降低可见于
关于血药浓度下列叙述不正确的是
根据热稳定条件,未考虑腐蚀时,接地装置接地极的截面不宜小于连接至该接地装置接地线截面的()。
工程项目的管理模式有()。
通过分析过去三个月内英镑对美元的汇率,得到汇率均值为1英镑=1.64美元,汇率波动标准差为250个基点。假设英镑对美元的汇率波动基本符合正态分布,则预期未来三个月中。英镑兑美元的汇率有95%的可能性处于()之间。
一天,一个外国旅游团同时入住北京一家饭店,行李进房后,一游客找到地陪说,他的行李找不到了,应在下述地方帮助寻找行李()。
Themostobviouspurposeofadvertisingistoinformtheconsumerofavailableproductsorservices.Thesecond【C1】______isto
陕西菜虽然没有名列全国的八大菜系之一,但作为千年古都、历史名城,餐饮风格自成一体,具有浓郁的地方特色。陕西饮食,凭借着历史古都的优势,挖掘继承历代宫廷美食之技艺,博采全国各地之精华,以品种繁多、地方风味各异、古色古香古韵而著称。至今很多都保留周、秦、汉、唐
最新回复
(
0
)