首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-01-22
33
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解.若α
1
+α
2
+α
3
+=(0,6,3,9)
T
,2α
2
一α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(一1,3,0,6)
T
C、(1.3.3,3)
T
+k(1,1,2,0)
T
D、(一1,3,0,6)
T
+k(一2,0,一3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)一3(2α
2
一α
3
)=(α
1
一α
2
)+4(α
3
一α
2
)=(一3,一3,一6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
一α
3
=α
2
+(α
2
一α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/kxw4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,下列结论正确的是().
α1=,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为________.
设a>0,f(x)=g(x)=,而D表示整个平面,则=________.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2)
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交,证明:β1,β2线性相关。
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s,外力为39.2g·cm/s2,问运动开始1min后的速度是多少?
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22若提供的广告费用为1.5万元
设A是四阶矩阵,A*是A的伴随矩阵,若线性方程Ax=0的基础解系中只有2个向量,则A*的秩是().
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
随机试题
一天早晨,检定人员老张在检定一件计量器具之前,对需要使用的计量标准器进行例行的加电检查时,发现标准器没有了数字显示。他打开该计量标准器的使用记录,未见最近的使用记录和设备状态的记载。老张记得昨天见过本组的小李曾使用过这台设备,于是向小李询问。小李说昨天操作
下列与“纸上得来终觉浅,绝知此事要躬行”体现的哲理相同的是()。
与时俱进的实质是()
原始细胞中见到Auer小体,可认为该白血病属于
甲、乙、丙、丁分别购买了某住宅楼(共四层)的一至四层住宅,并各自办理了房产证。下列说法正确的是()。
背景材料:某地铁车站基坑工程,承包商施工的具体方法如下:(1)基坑四周设置垂直的挡墙围护结构。(2)在基坑的施工支护结构中,采用现浇钢筋混凝土支撑体系。(3)控制基坑变形。(4)进行地基加固。问题:地基加固的方法有哪些?
关于利润,下列说法中错误的是( )。
下列广告支出不得在所得税前扣除的包括( )。
下面哪一条不是管理对信息和信息处理的要求()。
—Почемуневключенрадиоприемник?—Он_____целыйдень,иявыключила.
最新回复
(
0
)