首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,α3,…,αm线性无关的充分必要条件是( )。
向量组α1,α2,α3,…,αm线性无关的充分必要条件是( )。
admin
2021-11-25
26
问题
向量组α
1
,α
2
,α
3
,…,α
m
线性无关的充分必要条件是( )。
选项
A、α
1
,α
2
,α
3
,…,α
m
中任意两个向量不成比例
B、α
1
,α
2
,α
3
,…,α
m
是两两正交的非零向量组
C、设A=(α
1
,α
2
,α
3
,…,α
m
),方程组AX=0只有零解
D、α
1
,α
2
,α
3
,…,α
m
中向量的个数小于向量的维数
答案
C
解析
向量组α
1
,α
2
,α
3
,…,α
m
线性无关,则α
1
,α
2
,α
3
,…,α
m
中任意两个向量不成比例,反之不对,故A不对;
若α
1
,α
2
,α
3
,…,α
m
是两两正交的非零向量组,则α
1
,α
2
,α
3
,…,α
m
一定线性无关,但α
1
,α
2
,α
3
,…,α
m
线性无关不一定两两正交,B不对;
α
1
,α
2
,α
3
,…,α
m
中向量个数小于向量的维数不一定线性无关,D不对,选C.
转载请注明原文地址:https://kaotiyun.com/show/Iay4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设有三个线性无关的特征向量,求a及An.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设A,B为n阶正定矩阵,证明:A+B为正定矩阵。
从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
设曲线y=f(x)在[a,b]上连续,则曲线y=f(x),x=a,x=b及x轴所围成的图形的面积S=[].
极限=A≠0的充要条件是()
求极限=_______.
随机试题
腹腔手术中如何确定十二指肠空肠曲?
下述哪些组织,在有氧时仍需靠糖酵解供能
30岁妇女,主诉白带增多,检查宫颈阴道部宫口周围外观呈细颗粒状红色区,占整个宫颈面积的近2/3,宫颈刮片未见癌细胞。恰当的处置是
背景某机场建设项目指挥部,通过招投标程序与某施工单位(总承包方)按照《建设工程施工合同(示范文本)》(GF—2013—0201)签订了施工合同。合同总价款5244万元,采用固定总价合同一次性包死,合同工期400d。施工中发生了以下事件:事件一:发包方
()是中国历史上有确切纪年的开始。
在公共资源中,能源、城市道路、路灯、桥梁、交通标志等属于()。
虽然在刊物上时有应用辨证方法治疗癌症有效的报道,但大多数是在以西医疗法主导的前提下取得的,还有少数尽管是单靠中医而治愈的,但重复使用该法却不能取得更多的相同病例同样有效的验证,因而也都不具有普遍性意义。这段话主要讨论的是_______。
设A为实矩阵,证明ATA的特征值都是非负实数.
下列叙述中正确的是
Worldleadersneedtotakeactionontheenergycrisisthatistakingshapebeforeoureyes.Oilpricesare【C1】______anditlook
最新回复
(
0
)