首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
admin
2022-04-08
76
问题
设α
1
,α
2
……α
n
是n个n维向量,且已知a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0(*)只有零解.问方程组(α
1
+α
2
)x
1
+(α
2
+α
3
)x
2
+…+(α
n-1
+α
n
)x
n-1
+(α
n
+α
1
)x
n
=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求出其通解.
选项
答案
α
1
x
1
+α
2
x
2
+…+α
n
x
n
=0只有零解[*]r(α
1
,α
2
……α
n
)=n[*]α
1
,α
2
……α
n
,线性无关.(α
1
+α
2
,α
2
+α
3
,…,α
n-1
+α
n
,α
n
+α
1
)=[*]=[α
1
,α
2
……α
n
]C记为B=AC,其中r(A)=(α
1
,α
2
……α
n
)=n.[*]①当n=2k+1时,|C|=2≠0,r(B)=r(A)=n,方程组(**)只有零解②当n=2k时,|C|=0,C中有n一1阶子式C
n-1,n-1
=1≠0,因,r(A)=n,故r(B)=rC=n-1.方程组(**)有非零解,其基础解系由一个非零解组成.因(α
1
+α
2
)一(α
2
+α
3
)+(α
3
+α
4
)一…+(α
2k-1
+α
2k
)一(α
2k
+α
1
)=0,方程组(**)有通解k[1,一1,1,一1.…,1,一1]
T
,其中k是任意常数.或因A可逆,ACx=Bx=0和Cr=0同解,其中[*]r(B)=rC=2k一1,Bx=0有通解k[1,一1,1,一1.…,一1],k是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/kbf4777K
0
考研数学二
相关试题推荐
设曲线y=x2+ax+b与曲线2y=xy3-1在点(1,-1)处切线相同,则().
设三阶行列式其中aij=1或一1,i=1,2,3;j=1,2,3.则|A|的最大值是()
设f(χ),φ(χ)在点χ=0某邻域内连续,且χ→0时,f(χ)是φ(χ)的高阶无穷小,则χ→0时,∫0χf(t)sintdt是∫0χtφ(t)dt的()无穷小.【】
曲线上t=1对应的点处的曲率半径为().
设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)],则().
设当χ→时,(χ-sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则行为().
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
下列广义积分发散的是().
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
对郁证实证的治疗,常采用的治法有
新安装的变压器不需要干燥的条件是变压器注入合格绝缘油后,()。
为了克服投资利润率指标的某些缺陷,应采用()作为投资中心的评价指标。
自然人转让房地产,其转让的房地产坐落地与其居住所在地不一致时,在()税务机关申报缴纳土地增值税。
社会工作者在承担倡导者角色时,应该避免的是()。
若函数f(x)=x3-x在(a,10-a2)上有最小值,则a的取值范围为_________.
动机越强,做事情的效率越高。()
无知∶教育
根据我国宪法的规定,下列说法不正确的是:
一些国际环境组织近年来已改变了保护策略。他们努力拯救整个自然环境,而不是在一段时间内只力图拯救一个物种。许多专家感到在过去15年中,最成功的是世界上几乎所有国家都有了国家动植物保护区和保护公园。这意味着天然的野生生物区将继续供养着许多种相互依存的野生动植物
最新回复
(
0
)