首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
admin
2018-08-02
22
问题
设向量α
1
=(1,0,2,3),α
2
=(1,1,3,5),α
3
=(1,-1,a+2,1),α
4
=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α
1
,α
2
,α
3
,α
4
线性表示;a,b为何值时,β能用α
1
,α
2
,α
3
,α
4
线性表示,并写出该表达式.
选项
答案
当a=-1,b≠0时,β不能用α
1
,α
2
,α
3
,α
4
线性表示; 当a≠-1时,有唯一的线性表示: β=[*]α
3
+0α
4
; 当a=-1,b=0时,有 β=(-2c
1
+c
2
)α
1
+(1+c
1
-2c
2
)α
2
+c
1
α
3
+c
2
α
4
(c
1
,c
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/l2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫ab(a+b-x)dx.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
求微分方程y"+2y’-3y=(2x+1)ex的通解.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
随机试题
湿邪致病,病程较长,缠绵难愈,这是由于
有关慢性支气管炎诊断标准,咳嗽、咳痰反复发作时间应为
(2007年)点在铅垂平面Oxy内的运动方程式中,t为时间,v0、g为常数。点的运动轨迹应为()。
某社区地处城郊结合部,流动人口多,社区卫生状况较差。社会工作者希望从控制式教育人手改善这一状况,最适宜的做法是()。[2013年真题]
下列关于课程改革的背景的论述中正确的是()
《破产法》规定,债权申报期限为:自人民法院发布受理破产申请公告之日起三十日内。()
在某次考试中,有3个关于北京旅游景点的问题,要求考生每题选择某个景点的名称作为唯一答案。其中6位考生关于上述3个问题的答案依次如下:第一位考生:天坛、天坛、天安门第二位考生:天安门、天安门、天坛第三位考生:故宫、故宫、天坛第
ForanincreasingnumberofstudentsatAmericanuniversities,Oldissuddenlyin.Thereasonisobvious;thegrayingofAmerica
张先生:霍桑承认自己可以影响高层政府官员,并承认他把这种影响力出售给了环保组织。这种不道德的行为是没有正当理由的。李研究员:我不认为他的行为是不道德的。获得霍桑服务的组织是为了防止水污染.霍桑在为这个组织谋利的同时,也在为公众谋利。以下哪项最可能是上述
ThismonthSingaporepassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparents.CalledtheMai
最新回复
(
0
)