首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
admin
2017-08-28
30
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
选项
答案
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ) 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|x=ε=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|x=ε =[f(x)g〞(x)-f〞(x)g(x)]|x=ε=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以 f(ξ)/g(ξ)=f"(ξ)/g"(ξ) ε∈(a,b)
解析
转载请注明原文地址:https://kaotiyun.com/show/l2r4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为
设X1,X2,…,Xn为来自总体X的简单随机样本,总体X的概率密度为其中θ为未知参数,试求θ的最大似然估计量;
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(φ(2)=0.977,其中(x)是标准正态分布函数)
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).事件B表示三次中出现过正面,写出B中所包含的所有可能结果;
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
已知二次曲面x2+4y2+3z2+2axy+2xz+2(a-2)yz=1是椭球面,则a的取值为_______.
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
随机试题
简答成人教育的任务。
马克思主义政党的产生有两个条件,一是工人运动的发展,二是()
下述哪项是错误的产程时间
女性,68岁。乏力、腹胀、厌食5年。查体:肝病面容,巩膜黄染,结膜苍白,胸前有8枚蜘蛛痣,有肝掌,腹膨隆,肝肋下未触及,脾肋下4cm,移动性浊音阳性,双下肢无水肿。患者腹胀难忍,尿少,给予利尿剂,下列比例利尿效果最好的是
与潜在任职者相关的信息包括()。
在设备工程网络计划执行中,如果发现某工作进度拖后,则受影响的工作一定是该工作的( )。
计算定积分
下列关于Linux的陈述中,不正确的是()
硬盘的一个主要性能指标是容量,硬盘容量的计算公式为
A、Hewantstoquittheclasstoo.B、Heknowsnothingaboutswimming.C、Hemadegreateffortsinlearningtoswim.D、Heteachess
最新回复
(
0
)