首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,...αm(m
设n维列向量组α1,...αm(m
admin
2019-05-15
44
问题
设n维列向量组α
1
,...α
m
(m
1,β
2
,...,β
m
线性无关的充分必要条件为
选项
A、向量组α
1
,...α
m
可由向量β
1
,β
2
,...,β
m
线性表示.
B、向量组α
1
,...α
m
可由向量β
1
,β
2
,...,β
m
线性表示.
C、向量组α
1
,...α
m
与向量组β
1
,β
2
,...,β
m
等价.
D、矩阵A=(α
1
,...α
m
)与矩阵B=(β
1
,β
2
,...,β
m
)等价.
答案
D
解析
向量组β
1
,β
2
,...,β
m
线性无关 向量组的秩r(β
1
,β
2
,...,β
m
)=m.
根据定理“若α
1
,...α
m
,可由β
1
,β
2
,...,β
m
线性表出,则r(α
1
,...α
m
)≤r(β
1
,β
2
,...,β
m
)”.
若α
1
,...α
m
可由β
1
,β
2
,...,β
m
线性表示,则有r(α
1
,...α
m
)≤r(β
1
,β
2
,...,β
m
).
又因α
1
,...α
m
线性无关,知r(α
1
,...α
m
)=m.从而m≤r(β
1
,β
2
,...,β
m
).
又因β
1
,β
2
,...,β
m
是m个向量,知r(β
1
,β
2
,...,β
m
)≤m.故r(β
1
,β
2
,...,β
m
)=m,即β
1
,β
2
,...,β
m
线性无关.可见(A)是充分条件.那么(A)是必要的吗?即
α
1
,...α
m
与β
1
,β
2
,...,β
m
均线性无关,能否推导出α
1
,...α
m
必可由β
1
,β
2
,...,β
m
线性表示?
α
1
α
2
与β
1
β
2
α
1
,α
2
与β
1
,β
2
均线性无关,但α
1
,α
2
小能由β
1
,β
2
线性表示.
所以(A)只是充分条件并不必要.
对于(B),有r(β
1
,β
2
,...,β
m
)≤r(α
1
,...α
m
)=rn.
因此由(B)不能推导β
1
,β
2
,...,β
m
线性无关,即充分性A成立.同(A)后之例,知(B)不是必要条件,所以(B)对于β
1
,β
2
,...,β
m
线性无关是不充分义不必要的条件.
至于(C),所谓α
1
,...α
m
与β
1
,β
2
,...,β
m
等价,即这两个向量组出以互棉线性表出,m(A)知它只是一个充分条件。
转载请注明原文地址:https://kaotiyun.com/show/lIc4777K
0
考研数学一
相关试题推荐
(1993年)设函数f(x)=πx+x2(一π<x<π)的傅里叶级数展开式为则其中系数b3的值为___________.
(1988年)设f(x)是周期为2的周期函数,它在区间(一1,1]上的定义为则f(x)的傅里叶(Fourier)级数在x=1处收敛于__________________.
(2005年)求幂级数的收敛区间与和函数f(x).
(1991年)由方程所确定的函数z=z(x,y)在点(1,0,一1)处的全微分dz=___________.
(Ⅰ)已知A=,则(A*)-1=____________.(Ⅱ)已知A=,则A-1=____________.(Ⅲ)设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A一2B,B=,则(A+2E)-1=____________.(Ⅳ)设A=,B=(E
设A为2阶矩阵,α1,α2为线性无关的2维列向量.Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
设在一次试验中,事件A发生的概率为p.现进行州欠独立试验,则A至少发生一次的概率为____________;而事件A至多发生一次的概率为____________.
设三次独立试验中,事件A出现的概率相等.若已知A至少出现一次的概率等于,则事件A在一次试验中出现的概率为_______.
随机试题
丙酮酸脱氢酶复合体中最终接受底物脱下的2H的辅助因子是
判断由于心律失常引起晕厥最好的方法是()
某家企业为出口创汇,生产了一种新型产品,每年净外汇流量为180万美元,该产品生产6年,从第四年起,每年净外汇流量在上年基础上增长10万美元,则其国民经济外汇净现值是()(社会折现率为10%)。
《电力法》第32条规定:“用户用电不得危害供电,()安全和扰乱其秩序。对危害其安全和扰乱其秩序的,供电企业有权制止。”
下列各项中,属于利得的是()。
税务登记,是纳税人对生产、经营活动向税务机关进行登记的法定手续。根据《税收征管法》的规定,税务登记包括( )。
品牌之所以具有资产价值,最根本的原因在于()。
参观游览出发前,导游员必须提前()分钟到达出发地点。
求助者的主要心理问题包括()。心理咨询师在这段咨询中的主要目的是帮助求助者()。
Quiteanumberofpeoplehavewrittentoaskme,"Howdoyoufacelife?Haveyoueverfeltlonely,lonely【C1】______thepointo
最新回复
(
0
)