首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-05-21
50
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设C为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lOr4777K
0
考研数学一
相关试题推荐
(1)验证函数y(x)=(一∞<x<+∞)满足微分方程y"+y’+y=ex.(2)求幂级数y(x)=的和函数.
设f(x)连续,φ(x)=∫01f(xt)dt,且=A(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
已知曲面z=4一x2一y2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是()
设x1=a>0,y1=b<0,(a≤b),且xn+1=,n=1,2,…,证明:
设y1=ex一e一xsin2x,y2=e一x+e一Xcos2x是某二阶常系数非齐次线性方程的两个解,则该方程是________.
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
已知,B是3阶非零矩阵,且AB=0,则()
设有非齐次线性方程组,已知3阶矩阵B的列向量均为此方程组的解向量,且r(B)=2.求参数k的值及方程组的通解
检查产品质量时,在生产过程中每次抽取10个产品来检查,抽查100次,得到每10个产品中次品数的统计分布如下:利用χ2拟合检验准则检验生产过程中出现次品的概率是否可以认为是不变的,即每次抽查的10个产品中的次品数是否服从二项分布.(取显著性水平α=0.0
求函数f(x)=的间断点,并指出类型。
随机试题
目前,国际货物运输保险缺乏统一的国际公约,调整国际货物运输保险的法律主要是各国的________。
函证作为一种有力的审计证据,可主要用于证实()。
目前,已经开发出的金融期货合约主要有()。
建立和完善我国覆盖城乡居民的社会保障制度应当坚持的方针包括()。
林某以个人财产出资设立一个人独资企业,聘请陈某管理该企业事务。林某病故后,因企业负债较多,林某的妻子作为唯一继承人明确表示不愿继承该企业,该企业只得解散。根据《个人独资企业法》的规定,关于该企业清算人的下列表述中,正确的是()。
预测性财务信息的审核不属于注册会计师的审计业务。( )合理保证的鉴证业务所须审计证据要比有限保证的鉴证业务证据多。( )
气象服务经济包含两层意义,一是指利用气象服务来防灾、抗灾以避免风险和损失:二是指利用有利的气象条件来创造效益。人们可以利用气象信息作为从事经济活动的决策依据之一,可以根据气象服务提供的信息,安排生产经营活动,减少经济损失,提高经济效益。根据上述定义,下列属
简述按采购业务关系重要程度分,供应商可以分为哪几类。
要求社会工作者为受助家庭成员建立和扩展他们的社会支持网络,指的是社会工作者在家庭服务中承担的()角色。
WhilewesterngovernmentsworryoverthethreatofEbola,amorepervasivebutfarlessharmful【C1】______isspreadingthrough
最新回复
(
0
)