首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明函数恒等式arctanx=,x∈(一1,1).
证明函数恒等式arctanx=,x∈(一1,1).
admin
2016-01-15
37
问题
证明函数恒等式arctanx=
,x∈(一1,1).
选项
答案
令f(x)=arctanx,g(x)=[*],要证f(x)=g(x)在x∈(一1,1)时成立,只需证明: ①f(x),g(x)在(一1,1)内可导,且当x∈(一1,1)时,f’(x)=g’(x); ②存在x
0
∈(一1,1),使得f(x
0
)=g(x
0
). 由初等函数的性质知,f(x)与g(x)都在(一1,1)内可导,且容易计算得到 [*] 即当x∈(一1,1)时,f’(x)=g’(x).又f(0)=g(0)=0,因此当x∈(一1,1)时,f(x)=g(x), 即原等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Pw4777K
0
考研数学一
相关试题推荐
求函数y=的单调区间与极值,并求该曲线的渐近线.
设X~b(25,p1),Y~b(25—X,p2),求:(X,Y)的分布;
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B-CTA-1C正定.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
1证明:D=.
累次积分等于()。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
设半径为R的球体上,任意一点P处的密度为,其中P0为定点,且与球心的距离r0大于R,则该物体的质量为________.
(Ⅰ)设f(x)在(0,+∞)可导,f’(x)>0(x∈(0,+∞)),求证f(x)在(0,+∞)单调上升.(Ⅱ)求证:f(x)=在(0,+∞)单调上升,其中n为正数.(Ⅲ)设数列.
随机试题
中国共产党的历史使命就是发扬四种伟大精神,即伟大创造精神、伟大奋斗精神、伟大团结精神和伟大梦想精神。
A.等渗性缺水B.低渗性缺水C.高渗性缺水D.原发性缺水胃肠消化液的急性丢失易导致
百合固金汤制方原理主要涉及
艾炷灸可分为()
公司在经营活动中可以以自己的财产为他人提供担保。关于担保的表述中,下列哪一选项是正确的?()
下列关于我国古代城市规划思想的描述不确切的是()。
我国政府统计具有信息、咨询、()的职能。
教师开始关注学生的个别差异和不同需要,并考虑教学方法是否适合学生等问题。这表明该教师处于专业成长的()。
根据《税收征收管理法》及其他相关规定,对税务机关的征税行为提起诉讼,必须先经过复议,对复议决定不服的,可以在接到复议决定书之日起的一定时限内向人民法院起诉。下列各项中,符合上述时限规定的是()。
在Windows中,下列叙述中正确的是______。
最新回复
(
0
)