首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设,E为三阶单位矩阵. 求满足AB=E的所有矩阵B.
[2014年] 设,E为三阶单位矩阵. 求满足AB=E的所有矩阵B.
admin
2019-04-08
62
问题
[2014年] 设
,E为三阶单位矩阵.
求满足AB=E的所有矩阵B.
选项
答案
因A不可逆,需用元素法求出满足AB=E的所有矩阵.由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵.设其元素为x
ij
,有B=(x
ij
)
4×3
,则 [*] 即[*] 因而得到下述三个线性方程组: [*] 对上述三方程组的增广矩阵使用初等行变换化为含最高阶单位阵的矩阵: 对于方程组①,[*] 由基础解系和特解的简便求法即得方程组①的一个特解及对应的齐次线性方程组的一个基础解系,分别为η
1
=[2,一1,一1,0]
T
,α=[一1,2,3,1]
T
. 于是方程组①的通解为 X
1
=[x
11
,x
21
,x
31
,x
41
]
T
=Y
1
+η
1
=k
1
α+η
1
=[-k
1
+2,2k
1
一1,3k
1
一1,k
1
]
T
. 同样由[*]得方程组②的通解为 X
2
=[x
12
,x
22
,x
32
,x
42
]
T
=Y
2
+η
2
=k
2
α+η
2
=k
2
[一1,2,3,1]
T
+[6,一3,一4,0]
T
=[-k
2
+6,2k
2
-3,3k
2
—4,k
2
]
T
. 由[*]得方程组③的通解为 X
3
=[x
13
,x
23
,x
33
,x
43
]
T
=Y
3
+η
3
=k
3
α+η
3
=k
3
[一1,2,3,1]
T
+[-1,1,1,0]
T
=[-k
3
一1,2k
3
+1,3k
3
+1,k
3
]
T
. 综上得到, B=[X
1
,X
2
,X
3
]=[*] (其中k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/lR04777K
0
考研数学一
相关试题推荐
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=所截而成,计算|(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u3-5xy+5u=1确定.求.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max{X,Y},求E(Z).
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程.
设f(x)在x=a可导,且f(a)=1,f’(a)=3。求数列极限
随机试题
乳腺癌最常见的部位是乳房的
家庭资源理解不正确的是
6个月以后婴儿容易发生营养性缺铁性贫血的主要原因是
案例2006年4月11日23时20分,F钢铁公司转炉停炉检修结束后,该厂设备作业长指挥测试氧枪,不到2min的时间,约1685m3氧气从氧枪喷出后被吸入烟道排除,飘移近3000m到达烟道风机处。23时30分,检修烟道风机的1名钳工衣服被溅上气焊火花,全身
任何情况下,电动机的绝缘电阻不得低于每伏工作电压()Ω。
下列各项关于政府单位特定业务会计核算的一般原则中,正确的有()。
下列选项中,公共关系与人际关系存在的区别主要包括()等方面。
下列行为中,属于侵犯商业秘密的具体行为的是()
(2012年真题)根据我国商标法规定,注册商标的有效期为10年,其起算点为()。
模块化软件开发就是一种分离关注点(SeparationofConcerns)的手段,模块化应当遵循(30)的原则,提高模块的独立性。
最新回复
(
0
)