首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
admin
2018-04-15
52
问题
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
选项
答案
首先r(B)≤min{m,n}=n,由AB=E得r(AB)=n,而r(AB)≤r(B),所以r(B)≥n,从而r(B)=n,于是B的列向量组线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/tir4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(z)|≤b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f’(c)|≤2a+.
已知f(x)在x=0的某个邻域内连续,且f(0)=0.=2,则在点x=0处f(x)
设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
设函数f(x)=,则f(x)在(一∞,+∞)内
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=()。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)常数k的值;(Ⅱ)(X,Y)的边缘密度fX(x)和fY(y);(Ⅲ)条件密度fX|Y(y|x)和fX|Y(x|y);(Ⅳ)P{X+Y≤1}的值。
设S为椭球面+z2=1的上半部分,点P(x,y,z)∈S,∏为S在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面∏的距离,求.
若对任意t>0,有f(tx,ty)=t"(x,y),则称函数f(x,y)是n次齐次函数.试证:若f(x,y)可微,则f(x,y)是n次齐次函数的充要条件是
细菌的增长率与总数成正比如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为λ的指数分布.(Ⅰ)求第三辆车C在加油站等待加油时间T的概率密度;(Ⅱ
随机试题
公文的缮印要建立( )制度。
女性,36岁,因烧伤至头顶部瘢痕性秃发3年。查体:头顶部瘢痕面积10cm×8cm,无毛发生长,瘢痕较柔软,与基底颅骨间有一定滑动性。首选治疗秃发的手术方法为
校园文化是以学生为主体,以校园为主要空间,以育人为主要导向,以精神文化、环境文化、行为文化和制度文化建设等为主要内容,以校园精神、文明为主要特征的一种群体文化。以下属于校园文化的是:
海产公司应当向下列哪一法院申请诉前财产保全?本案中,有管辖权的法院接受海产公司的申请后,应当在多长时间内作出裁定?
根据我国《刑法》的规定,刑法的基本原则包括()。
期末计提短期借款利息时,贷记的账户是()。
金融约束论批评金融自由化的主要理由是()。
德育的个体发展功能的发挥应注意()。
次贷危机后,为应对金融市场动荡和经济衰退,美国政府推出一系列刺激政策,尤以货币政策为代表。2008年11月开始到2012年12月美联储先后实施了三轮量化宽松政策。请回答下面问题:(1)什么叫量化宽松政策,它和传统的货币政策工具有何不同?
价值的主体性体现在()
最新回复
(
0
)