首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则AX=b的通解必是( ).
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则AX=b的通解必是( ).
admin
2021-01-19
101
问题
已知β
1
,β
2
是非齐次线性方程组AX=b的两个不同的解,α
1
,α
2
是对应齐次线性方程组AX=0的基础解系,k
1
,k
2
为任意常数,则AX=b的通解必是( ).
选项
A、k
1
α
1
+k
2
(α
1
一α
2
)+(β
1
-β
2
)/2
B、k
1
α
1
+k
2
(α
1
一α
2
)+(β
1
+β
2
)/2
C、k
1
α
1
+k
2
(β
1
一β
2
)+(β
1
-β
2
)/2
D、k
1
α
1
+k
2
(β
1
一β
2
)+(β
1
+β
2
)/2
答案
B
解析
利用解的结构定理即命题2.4.4.2求之.
解一 因α
1
,α
2
线性无关,由命题2.3.2.2知α
1
,α
1
+α
2
线性无关,α
1
,α
1
一α
2
也线性无关.又因1/2+1/2=1,由命题2.4.4.1知,(β
1
+β
2
)/2为AX=b的一特解,由命题2.4.4.2知,k
1
α
1
+k
2
(α
2
一α
1
)+(β
1
+β
2
)/2为AX=b的通解.仅(B)入选.
解二 因(A)中(β
1
一β
2
)/2不是AX=b的特解,而(C)中既没有特解,且β
1
+β
2
也不是AX=0的解,(D)中虽有特解,且α
1
与β
2
一β
1
均为AX=0的解,但α
1
与β
2
一β
1
的线性相关性无法确定,故(A),(C),(D)均不正确.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/lg84777K
0
考研数学二
相关试题推荐
交换积分次序,则
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_________.
积分=__________.
若向量组(Ⅰ):α1=(1,0,0)T,α2=(1,1,0)T,α3=(1,1,1)T可由向量组(Ⅱ):β1,β2,β3,β4线性表示,则向量组(Ⅱ)的秩为______.
设α1=,则α1=,则α1,α2,α3,α4的一个极大线性无关组为________,其余的向量用极大线性无关组表示为________
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
求微分方程=x2+y2满足条件y|x=e=2e的特解.
(1992年)求微分方程(y-χ3)dχ-2χdy=0的通解.
(2000年试题,二)若则为().
随机试题
特异性投射系统的特点是( )。【2003年考试真题】
A.丙磺舒B.克拉维酸C.舒巴坦钠D.他唑巴坦E.甲氧苄啶因口服吸收差,可与氨苄西林以1:1的形式以次甲基相连,得到舒他西林的药物是()。
下列关于城市消防远程监控系统中用户服务系统软件的使用与检查要求的叙述中,错误的是()。
(操作员:王主管;账套:601账套;操作日期:2015年1月31日)设置固定资产变动方式。固资变动方式编码:06固资变动方式名称:投资者投入变动类型:增加固定资产
对风险进行识别、衡量、分析,并在此基础上有效处置,以最低成本实现最大安全保障的管理方法是()。
下列金融机构中,不属于狭义“影子银行”的是()。
下列各项中,不属于增值税征税范围的是()。
下列注册会计师进行会计分录测试的做法中,错误的是()。
[*]
LearningthroughTestsTakingatestisnotjustapassivemechanismforassessinghowmuchpeopleknow,accordingtonewre
最新回复
(
0
)