首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维向量,且已知 α1x1+α2x2+…+αnxn=0 (*) 只有零解.问方程组 (α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设α1,α2,…,αn是n个n维向量,且已知 α1x1+α2x2+…+αnxn=0 (*) 只有零解.问方程组 (α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
admin
2018-11-11
73
问题
设α
1
,α
2
,…,α
n
是n个n维向量,且已知
α
1
x
1
+α
2
x
2
+…+α
n
x
n
=0 (*)
只有零解.问方程组
(α
1
+α
2
)x
1
+(α
2
+α
3
)x
2
+…+(α
n-1
+α
n
)x
n-1
+(α
n
+α
1
)x
n
=0 (**)
何时只有零解?说明理由;何时有非零解?有非零解时,求出其通解.
选项
答案
α
1
x
1
+α
2
x
2
+…+α
n
x
n
=0只有零解[*]r(α
1
,α
2
,…,α
n
)=n[*]α
1
,α
2
,…,α
n
线性无关. [*] 记为B=AC,其中r(A)=r(α
1
,α
2
,…,α
n
)=n. [*] ①当n=2k+1时,|C|=2≠0,r(B)=r(A)=n,方程组(**)只有零解. ②当n=2k时,|C|=0,C中有,n=1阶子式C
n-1,n-1
=1≠0,因r(A)=n,故r(B)=r(C)=n—1. 方程组(**)有非零解,其基础解系由一个非零解组成. 因(α
1
+α
2
)一(α
2
+α
3
)+(α
3
+α
4
)一…+(α
2k-1
+α
2k
)一(α
2k
+α
1
)=0,方程组(**)有通解t[1,一1,1,一1,…,1,一1]
T
,其中t是任意常数. 或因A可逆,ACx=Bx=0和Cx=0同解, [*] r(B)=r(C)=2k一1,Bx=0有通解t[1,一1,1,一1,…,一1]
T
,t是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJj4777K
0
考研数学二
相关试题推荐
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.如果A≠O,证明3E—A不可逆.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:(A—E)(A+E)一1是正交矩阵.
设是f(x)的一个原函数,F(t)=∫0tdx∫0xxf(y)dy,则F"(t)=_____.
讨论曲线y=ln4x+4x与y=4lnx+k交点的个数.
试证向量a=一i+3j+2k,b=2i一3j一4k,c=一3i+12j+6k在同一平面上.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
求函数z=x4+y4一x2一2xy—y2的极值.
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
计算下列反常积分(广义积分)的值.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
随机试题
减压器是用来表示瓶内气体压力以及减压后气体压力的一种装置。
食品药品监督管理局向一药店发放药品经营许可证。后接举报称,该药店存在大量非法出售处方药的行为,该局在调查中发现药店的药品经营许可证系提供虚假材料欺骗所得。关于对许可证的处理,该局下列做法中正确的是()。
.
经典性病主要有
患儿,面色萎黄,黏膜、指甲苍白,不思饮食,四肢乏力,大便溏泄,舌质淡,苔薄白,脉细无力。辨证用方为
(2015年)2015年3月2日,甲将其生产的一批价值30万元的设备寄存于乙的仓库,寄存期限截至2015年4月30日。3月5日,甲将该批设备抵押给债权人A公司,双方签订了书面抵押合同,但未办理抵押登记。3月9日,乙向丙谎称该批设备属于自己,以35
椭圆,如图所示,其中F是左焦点,∠FBA=90°,则该椭圆的离心率e=()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
我国开始建立教师资格证书制度是在20世纪()
•Lookatthenotebelow.•Youwillhearawomancallingaboutaconferencebooking.MessageTo:
最新回复
(
0
)