首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
admin
2018-04-14
61
问题
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
选项
答案
方法一:由麦克劳林公式得 f(x)=f(0)+f’(0)x+[*]f"(0)x
2
+[*]f"’(η)x
3
, 其中η介于0与x之间,x∈[-1,1]。分别令x=-1,x=1并结合已知条件得 f(-1)=f(0)+[*]f"’(η
1
)=0,-1<η
2
<0, f(1)=f(0)+[*]f"’(η
2
)=1,0<η
2
<1, 两式相减,得 f"’(η
2
)+f"’(η
1
)=6。 由f"’(x)的连续性,知f"’(x)在区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 m≤1/2[f"’(η[2])+f"’(η
1
)]≤M。 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1),使 f"’(ξ)=1/2[f"’(η
2
)+f"’(η
1
)]=3。 方法二:构造函数φ(x),使得x∈[-1,1]时φ’(x)有三个零点,φ"(x)有两个零点,从而使用罗尔定理证明ξ必然存在。 设具有三阶连续导数φ(x)=f(x)+ax
3
+bx
2
+cx+d。令 [*] 再代入φ(x)得φ(x)=f(x)-[*]x
3
+[f(0)-[*]]x
2
-f(0)。 由罗尔定理可知,存在η
1
∈(-1,0),η
2
∈(0,1),使φ’(η
1
)=0,φ’(η
2
)=0,又因为φ’(0)=0,再由罗尔定理可知,存在ξ
1
∈(η
1
,0),ξ
2
∈(0,η
2
),使得φ"(ξ
1
)=0,φ"(ξ
2
)=0,再由罗尔定理知,存在ξ∈(ξ
1
,ξ
2
)[*](η
1
,η
2
)[*](-1,1),使 φ"’(ξ)=f"’(ξ)-3=0, 即f"’(ξ)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/mRk4777K
0
考研数学二
相关试题推荐
设函数y=y(x)由方程y=1-xey确定,则=________.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设函数f(x)在(-∞,+∞内连续,其导函数的图形如图所示,则f(x)有
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
[*]
设函数y=y(x)由参数方程确定。其中x(t)是初值问题
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
随机试题
A.丙氨酸和谷氨酰胺B.谷氨酸和丙氨酸C.瓜氨酸和精氨酸D.半胱氨酸和瓜氨酸E.组氨酸和赖氨酸氨在肝中合成尿素的主要中间物质
下列哪个选区创建工具可以“用于所有图层”?
摩托车通过立交桥时,如发现选择路线错误,应立即在原地掉头或倒车更改路线。
下列选项中,来自轴旁中胚叶的组织是
患者男,53岁,慢性支气管炎,肺气肿病史15年,近日呼吸困难加剧,咳嗽、咳痰。今日晨起一阵剧烈咳嗽后,喘憋加剧,不能平卧,胸痛,不敢呼吸。查体:口唇发绀,表情痛苦,胸部叩诊鼓音。行下列哪项检查可确诊
Koebner现象见于
对肝豆状核变性诊断有较大意义的是
生物碱中特殊杂质检查利用
某患者因左下肢血栓闭塞性脉管炎入院治疗,护士指导其做勃格运动的目的是
Thenewaircraftwillbe________toatestoftemperaturesof-65鈩?and120鈩?
最新回复
(
0
)