首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2016-10-21
76
问题
已知y
1
*
=χe
χ
+e
2χ
,y
2
*
=χe
χ
+eχ
-χ
,y
3
*
=χe
χ
+e
2χ
-e
-χ
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
-y
3
*
=e
-χ
,y
2
*
-y
3
*
=2e
-χ
-e
2χ
. 进一步又可得该齐次方程的两个特解是 y
1
=e
-χ
,y
2
=2(y
1
*
-y
3
*
)-(y
2
*
-y
3
*
)=e
2χ
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
-y
1
=χe
χ
. 因此该非齐次方程的通解是y=C
1
e
-χ
+C
2
e
2χ
+χe
χ
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y〞+py′+qy=f(χ). 它的相应特征根是λ
1
=-1,λ
2
=2,于是特征方程是 (λ+1)(λ-2)=0,即λ
2
-λ-2=0. 因此方程为y〞-y′-2y=f(χ). 再将特解y
4
*
=χe
χ
代入得 (χ+2)e
χ
-(χ+1)e
χ
-2χe
χ
=f(χ),即f(χ)=(1-2χ)e
χ
因此方程为y〞-y′-2y=(1-2χ)e
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/mWt4777K
0
考研数学二
相关试题推荐
设a1>0,an+1==ln(1+an),证明:存在,并求此极限.
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
求平面上的圆盘(x-b)2+y2≤a2(0<a<b)绕y轴旋转所得之圆环体的体积(如图所示)。
设g(x)>0为已知连续函数,在圆域D={(x,y)|x2+y2≤a2(a>0)}上计算二重积分,其中λ,μ为正常数。
设有级数,则该幂级数的收敛半径=________。
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18-2Q1p2=12-Q2其中p1,p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求;量,单位:吨)并且该企业生产
设x,y,z为实数,且满足关系式ex+y2+|z|=3,试证exy2|z|≤1.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).求L位于第一象限部分的一条切线,使得该切线与L以及两坐标轴所围图形的面积最小。
设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=.
随机试题
人民法院判决被告重新作出行政行为的,被告不得以同样的事实和理由作出与原行政行为基本相同的行政行为()
简述有效领导者的共同特征。
A.凉血止血,解毒敛疮B.凉血止血,清肝泻火C.凉血止血,清热解毒D.凉血止血,化痰止咳苎麻根具有的功效是
最近报道一女青年接受X线检查时,对医生让其脱掉上衣不解,甚至认为医生这样做是非常无礼的,有的甚至因此发生纠纷。此案例说明的核心伦理学问题是
戴口罩的目的是()。
坚持以人为本,这是科学发展观的本质和核心。以人为本,就是要把人民的利益作为一切工作的出发点和落脚点,不断满足人们的多方面需求和促进人的全面发展。具体地说,就是()。①在经济发展的基础上,不断提高人民群众物质文化生活水平和健康水平
以立法形式确定为人民服务宗旨的重要地位,集中体现在《人民警察法》的是()。
100多年前,英国人威里璧只能依靠租用的马队完成漫漫的西藏探险历程。今天,当世界各地的旅行者和探险家_______,驱车饱览雪域高原神秘文化和秀美风光的时候,_______的公路交通网早已把最初探索者们留下的艰难足迹_______在历史风尘中。依
蒙台梭利把0~6岁称为“精神胚胎期”,认为这段时间是人的敏感期——距离自己天性最近的时刻。但“精神胚胎期”只是对童年蕴藏着巨大力量和可能性的模糊认识。即便是这个最著名的儿童心理研究者,也承认对童年可能孕育的幸福和罪恶所知甚少。因此,当满怀爱意但缺乏耐心和观
甲为逃避处罚,私刻交警部门公章,伪造取车单,将其因违章被暂扣的电动三轮车骗回。甲的行为()3。(2013一法专一9)
最新回复
(
0
)