首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
admin
2018-08-12
37
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
+t
2
,β
2
=t
2
+t
2
3
,…,β
s
=t
1
s
+t
2
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。从α
1
,α
2
,…,α
s
是As=0的基础解系知s=n—r(A)。以下分析β
1
β
2
,…,β
s
线性无关的条件:设k
1
β
2
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
2
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
2
+…+(t
2
k
t-1
+t
1
k
s
)α
s
=0,由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*] 当t
1
s
+(一1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
β
2
,…,β
s
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/mhj4777K
0
考研数学二
相关试题推荐
计算(x+y2)dxdy,其中D:x2+y2≤2x+2y-1.
当x→0时,x-sinxcos2x~cxk,则c=_______,k=_______.
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)
设f(x)=是连续函数,求a,b.
设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为().
a,b取何值时,方程组有解?
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设z=u(x,y)eax+y,,求常数a,使
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)<n一1时,r(A*)=0.
将函数f(x)=展开成(x一1)的幂级数.
随机试题
抗氧自由基的最后环节是:
乳痈以发生于何时最为常见
Evenacarefulmotoristmayhavethemisfortunetocommitamotoring【C1】______.Induecourse,【C2】______asummons(传票),hewillap
目前临床广泛运用的是
A、FD-MSB、EI-MSC、FAB-MSD、LSI-MSE、ESI-MS电喷雾质谱为
假设丙有继承人戊,则就戊的权利,下列说法错误的是:(2015年卷三94题)
账务处理系统中,第一次应用计算机将手工账簿输入计算机的过程称为( )。
()是长期的,时间跨度通常超过一年。
制度化教育建立的典型表现特征是()。
下面哪项不属于夸美纽斯的循序渐进原则()。
最新回复
(
0
)