首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
admin
2018-08-12
63
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
+t
2
,β
2
=t
2
+t
2
3
,…,β
s
=t
1
s
+t
2
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。从α
1
,α
2
,…,α
s
是As=0的基础解系知s=n—r(A)。以下分析β
1
β
2
,…,β
s
线性无关的条件:设k
1
β
2
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
2
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
2
+…+(t
2
k
t-1
+t
1
k
s
)α
s
=0,由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*] 当t
1
s
+(一1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
β
2
,…,β
s
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/mhj4777K
0
考研数学二
相关试题推荐
证明:sinnxcosnxdx=2-nsinnxdx.
设f(x)在[a,+∞)上二阶可导,f(a)
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
顶角为60°,底圆半径为a的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
求极限:
求极限:
求下列积分:
求下列积分:
设f(x,y)在点(0,0)处连续,且其中a,b,C为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
随机试题
冰雪道路对安全行车的主要影响是________。
中心静脉压(CVP)监测
A.≤5cfu/m2B.≤10cfu/m2C.≤15cfu/m2D.≤200cfu/m2E.≤500cfu/m2供应室无菌区空气的细菌监测标准()
牧区养犬不注意饮食卫生有可能感染
A.疏肝B.止痉C.升阳D.解毒E.清肺薄荷除疏散风热外,又能()
技术资料及图纸不包括()。
Theearth,ourhome,isveryimportancefor【M1】__________allofus.Nobodycanlivewithher.And【M2】__________ifwelovehe
“民主有利于促进和谐。专断有利于提高效率。”你如何理解这句话?
Inthelate1960’s,manypeopleinNorthAmericaturnedtheirattentiontoenvironmentalproblems,andnewsteel-and-glassskysc
TheeconomyoftheUnitedStatesafter1952wastheeconomyofawell-fed,almostfullyemployedpeople.Despiteoccasionalalar
最新回复
(
0
)